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Neurons in the brain communicate with spikes, which are discrete events in time and value. Functional
network models often employ rate units that are continuously coupled by analog signals. Is there a
qualitative difference implied by these two forms of signaling? We develop a unified mean-field theory for
large random networks to show that first- and second-order statistics in rate and binary networks are in fact
identical if rate neurons receive the right amount of noise. Their response to presented stimuli, however, can
be radically different. We quantify these differences by studying how nearby state trajectories evolve over
time, asking to what extent the dynamics is chaotic. Chaos in the two models is found to be qualitatively
different. In binary networks, we find a network-size-dependent transition to chaos and a chaotic
submanifold whose dimensionality expands stereotypically with time, while rate networks with matched
statistics are nonchaotic. Dimensionality expansion in chaotic binary networks aids classification in
reservoir computing and optimal performance is reached within about a single activation per neuron; a fast
mechanism for computation that we demonstrate also in spiking networks. A generalization of this
mechanism extends to rate networks in their respective chaotic regimes.
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I. INTRODUCTION

While biological neurons communicate by spikes, which
are discrete all-or-nothing events, artificial neural networks
overwhelmingly use continuous-valued units commonly
referred to as “rate neurons.” The ramifications of this
fundamental distinction between discrete and continuous
signaling have been debated concerning learning algo-
rithms [1,2], energy efficiency [3], and information coding
[4–11]. Here we study how differences in signaling impact
network dynamics underlying classification performance in
a reservoir setting [12–14]: Input stimuli influence the
dynamical state of a randomly connected network which
then acts as the representation, from which the desired
output is extracted by a linear readout. For a classification
task, the representation thus needs to allow a linear
separation of classes. Dynamics promotes this separability
by nonlinearly embedding the input into its high-

dimensional state space. This embedding is analogous to
the kernel trick used in support vector machines [15]: A
generic mapping into a high-dimensional nonlinear feature
space tends to improve separability because in N dimen-
sions dichotomies of 2N random points can be linearly
separated with high probability [16]. Presenting input
stimuli as initial conditions to the dynamics of a network,
the nonlinear transformation of the representation is deter-
mined by the subsequent temporal evolution [Figs. 1(a) and
1(d)]. For example, consider stimuli belonging to different
classes, each given by a centroid and local noise [Fig. 1(d)].
Two properties are needed for classification: Differences
between stimulus classes must be maintained or amplified
to foster discrimination [Fig. 1(c), green]. Similar stimuli,
however, should lead to similar representations to support
generalization; the distance between trajectories of data
points belonging to the same class should have limited
growth [Fig. 1(c), dark orange]. This view exposes the tight
link to chaos, the sensitivity of the dynamics to initial
conditions. For rate networks close to the edge of chaos,
separation and generalization are well balanced, leading
generally to optimal performance [17–20]. While the
theory of deterministic [21,22] and stochastic rate networks
[23] is well understood and predicts a clearly defined
transition to chaos, its link to chaos in binary networks
[24,25] remains elusive. Binary networks are the simplest
class of models with discrete signaling between neurons.
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Here we develop a systematic and model-independent
approach to derive mean-field theories for large random
networks (Sec. II A). The formalism finds the same set of
mean-field equations simultaneously describing binary and
rate networks. It shows that a stochastic rate network with
properly chosen noise has the same first- and second-order
activity statistics as a binary network. The approach allows
for replica calculations, the study of ensembles of pairs of
networks with identical connectivity in each realization, but
different stimuli, as required to assess chaos and compu-
tation [Fig. 1(b)]. For stochastic dynamics, one compares
two systems with slightly different initial conditions but
identical realization of stochasticity [26]. The replica theory
exposes that chaos and signal processing in statistically
matched rate and binary networks are qualitatively differ-
ent: Binary networks show a transition to chaos that
depends on network size (Secs. II B and II C). In the
chaotic regime, distances between states in binary networks
increase transiently in a stereotypical manner, confined to a
chaotic submanifold whose dimension depends on the

coupling strength and is a fraction of the entire state space
[dmax in Fig. 1(c), Sec. II D]. Rate networks with sta-
tistically matched activity, in contrast, are nonchaotic
(Sec. II E). Giving up on the statistical match, rate networks
with weak noise in their corresponding chaotic regime
show a qualitatively different divergence of state trajecto-
ries that sensitively depends on the coupling strength
(Sec. II F). Given a distribution of input data whose
within-class variability is smaller than the average
between-class distances [Fig. 1(d), dark orange and green],
the dimensionality expansion of presented stimuli by
chaotic binary networks leads to a separation that is optimal
for classification after topt=τ ¼ 2 ln 2 ≃ 1.4 activations per
neuron [Figs. 1(c) and 1(e), Sec. II G]. Subsequently, the
chaotic mixing leads to a gradual decline of separability
[Fig. 1(f)]. Despite the qualitative differences between rate
and binary networks, both mechanisms of chaos can be
employed to increase classification performance deep in the
chaotic regime in a wide range of networks models,
including long-short-term-memory (LSTM) and spiking
networks (Sec. II H).

II. RESULTS

A. Model-independent field theory of neuronal
networks

Here we derive a framework to compute the statistics of
neuronal networks in a manner that is largely independent
of the employed neuron model. Such a framework is
needed to systematically compare different model classes
and to assess the generality of results. It must be flexible
enough to enable the use of methods such as disorder
averages and replica calculations; techniques that are
required to systematically derive mean-field equations that
allow us to compare networks on a statistical level and to
assess how distances between different dynamical states
evolve over time and classification of input signals can be
achieved (Fig. 1).
We consider a network of N neurons with connectivity

matrix J, where individual entries are independently and

identically distributed as Jij ∼
i.i.d.N ðḡ=N; g2=NÞ; assump-

tions on the statistics can easily be relaxed as long as
higher-order cumulants are suppressed by the large network
size. The N neurons have inputs h ¼ ½h1ðtÞ;…; hNðtÞ� and
outputs x ¼ ½x1ðtÞ;…; xNðtÞ�. The input-to-output relation
of a neuron is often stochastic, so that a conditional
probability ρ½xjh� of the output given the input is the most
general description of the neural dynamics. The joint
statistics of input and output is then

ρ½x; h� ¼ ρ½xjh�ρ½h� ð1Þ

amounting to a separation of the neurons’ input-output
functional ρ½xjh� ≔ Q

i ρ½xijhi� and the input statistics ρ½h�.

(a)

(c)

(d) (e) (f)

(b)

FIG. 1. Transient chaotic dimensionality expansion. The di-
vergence of trajectories with different initial conditions in a
chaotic network (a) can be computed by a replica calculation (b),
leading to a curve describing the average temporal evolution of
the distance (c). Sketch of linearly nonseparable data (d) supplied
as initial condition to the dynamics (a). Chaotic dynamics
expands the representation into spaces with increasing dimension
(c). Interclass separation (green) initially grows quicker than
variability within class (dark orange) up to point topt of optimal
separability (e). Subsequently, chaotic mixing causes separability
to decline, ultimately leading to a completely mixed state (f).
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Here we denote the functionals by angular brackets and
vectors of neuron indices by bold-font symbols.
Any observable O of a neuronal network can be

expressed as a functional of the inputs h, which have
the advantage of being closer to a Gaussian distribution
than x due to the convergence of many outputs on one
input. Because we do not know the disorder realization
(e.g., of the connectivity) in detail, but at most its statistics,
we can access only quenched disorder-averaged quantities
like

hO½h�iJ;h ≔
Z

Dhhρ½h�ðJÞiJO½h�:

The description of the network dynamics is self-consistently
closed by using a delta distribution ρ½h� ¼ δ½h − Jx� to
enforce that the input to each neuron is composed of a sum
of outputs weighted by the synaptic connectivity J. The
idea of splitting the system into a neuron and a coupling
model is illustrated in Fig. 2. Note that Eq. (1) is not a
circular definition because ρ½xjh� is a causal functional
and ρ½h� ¼ δ½h − Jx� couples only equal time points
of h and x, so that the concatenation in Eq. (1) can be
understood as a spiral moving forward in time (see also the
Appendix 1).
Using the Fourier representation of ρ½h� we obtain, at the

expense of introducing the response fields ĥ, the disorder-
averaged input statistics

hρ½h�ðJÞiJ ¼
�Z

Dxρ½x; h�
�

J

¼
Z

Dĥ exp ðĥThÞ
Z

Dxhexp ð−ĥTJxÞiJρ½xjh�

obtained by marginalizing over x. The connectivity average
acts only on the interaction term,which nowhas the formof a
moment-generating function of J. In its cumulant expansion,
intensive parameters of the system are the first and second
cumulant ḡ=N and g2=N, respectively. Higher cumulants
would also be suppressed if one assumes the commonly
chosen scaling ∝ N−1

2 of synaptic weights [24,25].
The cumulant expansion suggests to do a Hubbard-

Stratonovich transformationwith the auxiliary fieldsRðtÞ ≔
ðḡ=NÞPi xiðtÞ andQðt; sÞ ≔ ðg2=NÞPi xiðtÞxiðsÞ, as out-
lined in theAppendix 1, so that a saddle-point approximation
gives self-consistency relations for themean inputs andmean
time-lagged autocorrelations, a dynamical mean-field theory
(DMFT)

RðtÞ ¼ ḡhxðtÞiΩðR;QÞ; ð2Þ

Qðt; sÞ ¼ g2hxðtÞxðsÞiΩðR;QÞ; ð3Þ

where the average h…iΩðR;QÞ is defined in Eq. (A9) as an
average over x ∼ hρ½xjh�ih and h is a Gaussian process
h ∼N ðR;QÞ. We may think of xðtÞ as the representative
neuron of a homogeneous population, because all neurons
with statistically identical connectivity and properties are
identical after the disorder average. On the intuitive level,
DMFT corresponds to modeling the inputs of all neurons as
independent Gaussian processes h ∼N ðR;QÞ.
Thus, one obtains the DMFT using only the output-to-

input relation given by the disordered connectivity while
staying agnostic of the neuron model. To instantiate the
approximation for the binary model studied here, we must
now provide knowledge about the input-to-output rela-
tion ρ½xjh�.

1. Binary neuron model

We consider the binary neuron model, or kinetic Ising
model, with state xi ∈ f−1; 1g [27,28]. The states of all
neurons are updated asynchronously by independent
Poisson processes with rate τ−1 and an activation proba-
bility function Tp∶R → ½0; 1�. It is clear that the form of
ρ½xjh� depends on the realization of the update times, which
constitute a source of noise, or temporal stochasticity. The
update sequence may be thought of as another type of
disorder in the sense that it breaks the homogeneity of the
time axis by selecting a set of time points where the
neuronal state can change. As with the random connec-
tivity, one may study the behavior of the system averaged
over this disorder. In this case, the probability of finding a
neuron active at time t,

FIG. 2. Summary of model-independent field theory. Concep-
tual idea to split the network into neuronal dynamics described by
conditional probability ρ½xijhi� of neuronal output xi given its
input hi, and the mapping of output to input by connectivity Jij.
The connectivity average affects only the output-to-input map-
ping and can thus be performed without specifying the neuron
model. The formal saddle-point approximation in auxiliary fields
RðtÞ ≃ RðtÞ and Qðt; sÞ ≃Qðt; sÞ [Eqs. (2) and (3)] amounts to a
Gaussian approximation of the input hi ∼N ðR;QÞ.
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p½xiðtÞ ¼ 1jhi� ¼
Z

t

−∞

dt0

τ
e−ðt−t0Þ=τTpðhiðt0ÞÞ ð4Þ

is given by the probability Tpðhiðt0ÞÞ to be activated at any
prior update time point t0 and the survivor function e−ðt−t0Þ=τ
[29], the probability that no further update happened since.
While this knowledge is far from knowing the complete
probability functional ρ½xjh� across its infinite time dimen-
sion, the information about this single time slice is
sufficient to plug into Eq. (2) and obtain, after taking a
time derivative, the mean-field equation

τ
d
dt

RðtÞ þ RðtÞ ¼ ḡhTðhÞih∼N ðRðtÞ;Qðt;tÞÞ; ð5Þ

where

TðhÞ ¼ 2TpðhÞ − 1: ð6Þ

Details are provided in the Appendix 2.
In Eq. (5), only equal-time autocorrelations Qðt; tÞ

appear, because the dynamics is a Markov process; its
evolution at time t depends only on the statistics at this very
time point, not on the prior history. Closing the equation is
thus simple for binary neurons, because, by xi ∈ f−1; 1g,
their autocorrelation is always 1, so that Qðt; tÞ ¼
ðg2=NÞPi hxiðtÞxiðtÞi ¼ g2 when cross-correlations are
negligible (see the Appendix 1).
To compute Qðt; tþ ΔtÞ for binary neurons, we need

more information about ρ½xjh�, namely, the joint proba-
bility distribution over two time slices for a neuron:

ρ½xðtÞ; xðsÞjh� ¼ ρ½xðtÞjxðsÞ; h�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
!t↘s

δxðtÞ;xðsÞ

ρ½xðsÞjh�: ð7Þ

To construct ρ½xðtÞjxðsÞ; h� for binary neurons, the basic
idea is to iterate the 2 × 2 states a neuron can assume at the
points in time s and t and consider all possible evolutions
that match the respective initial and final condition. From
such a consideration, we derive QðΔtÞ ¼ Qðt; tþ ΔtÞ for
stationary dynamics in the Appendix 3 by again taking a
time derivative of the saddle-point equation (3) yielding

τ
d

dΔt
QðΔtÞ þQðΔtÞ

¼ g2
Z

∞

0

dt0

τ
e−t

0=τhTðhÞTðh0Þiðh;h0Þ∼N R;Qð0Þ;QðΔtþt0Þ
: ð8Þ

This equation is the analogon of the integral equation (5.17)
of van Vreeswijk and Sompolinsky [25]. The advantage of
the form (8) compared to the classical result is, as detailed
in the Appendix 3, that by differentiating once more with
respect to Δt and then using Price’s theorem [30], it can be
cast into a Newtonian form

τ2Q̈ðΔtÞ ¼ −V 0
R;Qð0ÞðQðΔtÞÞ; ð9Þ

VR;Qð0ÞðQÞ≔−
1

2
Q2þg2hT ðhÞT ðh0Þiðh;h0Þ∼N R;Qð0Þ;Q ; ð10Þ

where T is a primitive of T, which is ∂hT ðhÞ ¼ TðhÞ, and
N R;Qð0Þ;Q is the bivariate Gaussian with stationary mean R

and covariance matrix ðQð0Þ
Q

Q
Qð0ÞÞ. We exploit this result in

Sec. II E to construct rate models with exactly the same
DMFT solution as a binary network.

B. Binary networks are always chaotic in the
thermodynamic limit

In the setting of reservoir computing (Fig. 1), a particu-
larly importantmeasure for the classification performance of
a network is how the distance between two different
dynamical states, each caused by one stimulus, evolves
over time. Tracking the evolution of initially small
differences between the states amounts to the characteriza-
tion of chaos [17,18,21,23,31,32]. We assess chaos by
studying the time evolution of two systems with infinitesi-
mally different initial conditions but identical connectivity
and identical realization of stochasticity, thus, the same
sequences of update time points. Technically, this approach
amounts to a replica calculation, where one studies the
network-averaged correlation between the states of the two
systems over time, an approach pioneered by Derrida and
Pomeau [33]. Here we do not use the classical annealed
approximation of this original work, where the connectivity
is redrawn in every time step, but compute the full quenched
averages, where the connectivity is constant in time. The
calculation leads to a dynamic mean-field theory for the
correlation between replicas.
In the Appendix 4, by an approach analogous to the

derivation of the ordinary differential equation (ODE) for
the autocorrelation (10), we obtain the evolution of the
cross-replica equal-time correlation Qð12ÞðtÞ in the binary
network as

τ
d
dt
Qð12ÞðtÞ ¼−Qð12ÞðtÞ

þ g2ð1− hjTðhð1ÞÞ−Tðhð2ÞÞjihð1Þ;hð2Þ Þ: ð11Þ
Here, ðhð1Þ; hð2ÞÞ ∼N ðR;QÞ is a measure of a
pair of Gaussian processes with means hhðαÞi ¼ RðαÞ ¼
hTðhÞih∼N ðRðαÞ;g2Þ, the stationary solution of Eq. (5), and

covariance matrix ⟪hðαÞhðβÞ⟫ ¼ QðαβÞðtÞ, whose diagonal
elements are each QðααÞðtÞ ¼ g2.
Since the two replicas are nearly perfectly correlated in

the beginning, we know that the correlation between a
neuron and its “copy” in the other replica is given by the
autocorrelation at first, motivating the ansatz

Qð12ÞðtÞ ¼ Qð0Þ − ϵðtÞ; ϵðtÞ ≥ 0:
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As shown in the Appendix 4, an expansion for small ϵ leads
to the approximate equation governing the evolution of
ϵðtÞ,

τ
d
dt

ϵðtÞ ¼ −ϵðtÞ þ 2ffiffiffi
π

p g2hT 0ðhÞih∼N ðR;Qð0ÞÞ
ffiffiffiffiffiffiffiffi
ϵðtÞ

p
; ð12Þ

which generalizes the result of van Vreeswijk and
Sompolinsky [25] to arbitrary activation functions. As
was their conclusion for neurons with hard threshold, we
see from Eq. (12) that for any activation function with
average positive slope and independent of the parameters,
the positive term ∝

ffiffiffi
ϵ

p
is always larger than the negative

linear term for small ϵ, so an initial deviation between the
replicas will grow, indicating chaotic dynamics. Since the
calculation becomes exact in the thermodynamic limit,
the conclusion is that infinitely large binary networks are
always chaotic, with a formally infinite maximum
Lyapunov exponent since the slope of the right-hand side
of Eq. (12) at ϵ ¼ 0þ is infinite, leading to an initial growth
of ϵ that is faster than exponential. More specifically,
ϵðtÞ ∼ t2 for ϵ ≪ 1, meaning that ϵð0Þ ¼ 0þ grows to a
finite value in finite time, as opposed to an exponential
function. See the Appendix 5 for additional details. Since
the slope of the activation function only appears averaged
over the input distribution, there is no qualitative difference
between different activation functions. In particular, going
from a stochastic activation function to the deterministic
Heaviside limit changes only the second term in Eq. (12) by
a finite factor, and thus does not qualitatively alter the
chaotic behavior. This result can also be understood by
noting that for the stochastic activation function, the
function value at each update is compared to a random
number to decide the activity state. The comparison is just
like using a Heaviside function but with a randomly drawn
threshold at each update.

C. Transition to chaos in finite-size binary networks

In contrast to the theoretical prediction, simulations of
binary networks in fact show parameter regimes with
regular dynamics (Fig. 4). Since the theory is only exact
in the limit of infinite network size, this behavior suggests a
finite-size effect. But the result of the replica calculation
(12) does not rely on carrying out the N → ∞ limit. Rather,
it is expected to be a good approximation for finite, yet
large networks N ≫ 1. How can the theory be reconciled
with the simulation?
First, while the square-root term in Eq. (12) is always

larger for sufficiently small ϵ, there also exists a point

∂tϵ
� ¼! 0 where this relationship reverses, and the linear

term starts to dominate: The point where the right-hand side
of Eq. (12) vanishes,

ffiffiffiffiffi
ϵ�

p
¼ 2ffiffiffi

π
p g2hT 0ðhÞih: ð13Þ

This point corresponds to a stable average distance between
(partly) decorrelated trajectories, as illustrated in Fig. 3.
Second, in a finite network of N binary neurons, an

infinitesimal perturbation cannot be realized, since the
smallest possible perturbation is to flip a single spin at
index iflip. A single flip implies for the minimally perturbed
cross-replica correlation (A21)

Qð0Þ − ϵmin ¼ g2hxð1Þxð2Þi

¼ g2
1

N

�XN
i¼1

ðxð1Þi xð1Þi Þ − xð1Þiflip
xð1Þiflip|fflfflffl{zfflfflffl}

¼1

þ xð1Þiflip
xð2Þiflip|fflfflffl{zfflfflffl}

¼−1

�

¼ Qð0Þ − 2
g2

N
;

so that

ϵmin ¼ 2
g2

N
: ð14Þ

Therefore, if ϵmin > ϵ� the replicas will tend toward more
correlation. But as the only possible step below ϵmin is
having zero different spins and thus perfect correlation, the
initial difference should tend to be completely forgotten,
resulting in regular dynamics. On the other hand, if
ϵmin < ϵ� an increase of the initial difference is possible.
Thus, the chaos transition criterion in the finite binary

network is ϵmin ≤
!
ϵ� resulting in

FIG. 3. Fixed-point average distance between replicas implies
chaotic subspace. The square-root term ∝

ffiffiffi
ϵ

p
(dark orange curve)

and the linear term ∝ ϵ in Eq. (12) intersect and produce a fixed
point ϵ� for the covariance Qð0Þ − ϵ between the two replicas.
The resulting average Hamming distance d� between states in the
two copies of the system is given by ϵ� and Eq. (16) as
d� ¼ Nϵ�=g2. Depending on whether ϵmin, the minimum decor-
relation due to a single flipped spin, is smaller or larger than ϵ�,
the replicas will either decorrelate, or they will converge and
forget the perturbation.
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1≲
ffiffiffi
2

π

r
ghT 0ðhÞih

ffiffiffiffi
N

p
: ð15Þ

Because of the scaling with
ffiffiffiffi
N

p
, it is clear that networks

with thousands or even only hundreds of neurons are only
nonchaotic if the connectivity is very weak, g≲ N−1

2, or the
dynamics is saturated [which gives a small hT 0ðhÞih]. Also,
N → ∞ clearly recovers the limit of strictly chaotic
dynamics. For the special case of a Heaviside activation
function and vanishing mean connectivity ḡ ¼ 0, the
network is always chaotic, since hH0ðhÞih∼N ð0;g2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπg2Þ

p
results in π=2 ≤

ffiffiffiffi
N

p
, which is certainly true

for typical network sizes.
The predicted transition and the residual correlation ϵ� fit

those observed in simulations quite well (Fig. 4). The
dependence of the transition on the positive mean con-
nectivity ḡ in the upper panels arises because the network
settles in a state with nonzero mean activity that depends on
ḡ; it selects one of the two degenerate states in this bistable

“ferromagnetic” regime. The symmetry with respect to a
global sign flip of the activity is spontaneously broken. In
this state, neurons show a very small average slope
hT 0ðHÞiH, thus shifting the point of transition to larger g
with increasing ḡ. The predicted residual correlation is
independent of N [Fig. 4(c), compare Eq. (13)], while the
chaos transition depends on N [compare Eq. (15)].
We obtain the same criterion (15) through a less general,

but more intuitive perspective by analyzing the probability
that, given a single-spin difference, the difference in inputs
is such that during the next updates, another neuron will
also be updated to a “wrong” state (see the Appendix 7).
This view provides an expression for the average rate of
decorrelation caused by an initial single spin flip. Requiring
this rate to be unity, we obtain the same chaos transition
criterion as Eq. (15). The approach is inspired from and
very similar to calculating the divergence rate of flux tubes
in spiking networks [34]. Such flux tubes are stable local
environments of a phase-space trajectory, while the net-
work is globally unstable. Thus, the phase space can be

(a)

(c) (d)

(b)

FIG. 4. Chaos transition and residual correlation in theory (a),(c) and simulations (b),(d). (a) Theoretical prediction of chaos transition
[green line, Eq. (15)] and residual correlation coefficient between replicas [dark orange shading, c�12 ¼ 1 −Qð0Þ−1ϵ� and Eq. (13)] for
varying mean ḡ and variance g2 of the connectivity. Other parameters areN ¼ 5000, T ¼ tanh, τ ¼ 10 ms. (b) As in (a), but each pixel is
colored dark orange (chaotic) or green (stable) according to a network simulation. Two identical networks are evolved with identical
random numbers, only one being perturbed by flipping four spins, and after Tsim ¼ 2500 ms the correlation between the state vectors is
computed. The few scattered green dots in the chaotic regime are algorithmic artifacts where the perturbation is unsuccessful; see the
Appendix 11 for the perturbation method. (c) Theoretical prediction for varying network size N and slope T 0ð0Þ of the activation
function TðhÞ ¼ tanhðT 0ð0ÞhÞ. Other parameters are ḡ ¼ 0, g2 ¼ 0.01, and τ ¼ 10 ms. (d) As in (c) but from network simulations, with
procedure as described for (b).
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partitioned into tubes which diverge from each other, while
perturbations within a tube decay. Indeed, the binary
network has relatively trivial flux tubes in the input phase
space given by those regions that result in the same
updated state.
Note that the chaos transition shown in Fig. 4(d) in

simulations happens at slightly larger slopes T 0ð0Þ than
predicted by Eq. (15). Considering the cascade of spin flips
evoked by the initial perturbation provides an explanation:
If the average proliferation rate of spin flips per time
constant is only slightly above 1, the cascade triggered by a
single flipped spin still has a large probability of dying out.

D. Dynamics in binary networks is governed by a
chaotic submanifold

The chaos in binary networks found in Sec. II B causes
nearby trajectories to diverge at first. Because of the fixed
point value ϵ� of the residual correlation found in Sec. II C,
however, the network states of the replicas do not decorre-
late completely. Instead, any pair of trajectories has an
average maximal distance determined by ϵ�. This limited
distance is a result of the two trajectories evolving by the
same network connectivity and update sequence. Also,
trajectories that are very far apart will converge to this
residual correlation. The fixed-point distance ϵ� is thus a
representative of the average distance between any two
trajectories in the long-time limit. The corresponding
Hamming distance Hð12Þ ¼ 1

4
jjxð1Þ − xð2Þjj2, that is, the

number of different spins between a pair of binary states,
is given by

Hð12ÞðtÞ ¼ NϵðtÞ
2g2

; ð16Þ

where we use Qð12Þ ¼ ðg2=NÞðN − 2Hð12ÞÞ and the pre-
factor of Hð12Þ arises because every flipped spin causes a
decrease by 2 (from þ1 to −1). Even though the Hð12Þ spin
flips distinguishing two trajectories can in principle be
distributed across any of the N neurons, the subspace
spanned by the set of possible trajectories has an approxi-
mate dimensionality of

dðtÞ ≃ 2Hð12ÞðtÞ ≃ N
g2

ϵðtÞ: ð17Þ

This relation can be understood by considering two inde-
pendently drawn binary random vectors of dimension d that
have, on average, the distance Hð12Þ ¼ d=2, because the
average distance between any pair of spins that take the
values xð1Þ; xð2Þ ∈ f−1; 1g with equal probabilities is
hðxð1Þ − xð2ÞÞ2i=4 ¼ 1=2. Therefore, in the following, we
quantify dimensionality via the Hamming distance Hð12Þ
using Eq. (17).

Thus, if ϵmin > ϵ�, then Hð12Þð∞Þ < 1, and the set of
long-term trajectories contains only a single trajectory, thus
constituting a limit cycle (although the return time is
astronomically large [35]). Irrespective of the initial state,
the network is attracted to a stereotypical trajectory; the
dynamics is regular. This situation arises for very weak
coupling.
If ϵmin < ϵ�, then Hð12Þð∞Þ > 1, and there are many

trajectories that constitute the attractive subspace. The
evolution within the space is chaotic, because for any pair
of states with an initial distance ϵ < ϵ�, the distance
increases; thus, small differences are amplified. A set of
trajectories that initially spans a low-dimensional subspace
is thus expanded into a higher-dimensional space. For long
times, however, any two states differ in only typically
dð∞Þ=2 of their neurons. This limiting dimensionality
grows proportional to Ng2 as seen by inserting Eq. (13)
into Eq. (16)

d� ¼ Ng2
�

2ffiffiffi
π

p hT 0ðhÞih
	

2

: ð18Þ

The time evolution when starting with a set of trajectories
with dimensionality dð0Þ is given by

dðtÞ ¼ ½
ffiffiffiffiffi
d�

p
− ð

ffiffiffiffiffi
d�

p
−

ffiffiffiffiffiffiffiffiffi
dð0Þ

p
Þe−ðt=2τÞ�2 ð19Þ

obtained by integrating Eq. (12) (see the Appendix 5) and
shown in Fig. 6(a). This explicit solution shows that the
expansion happens very quickly on a timescale of 2τ,
where τ is the average time to have one update per neuron,
and then converges to the residual value d� (18) for long
times. This exclusive dependence on τ can intuitively be
understood from the right-hand side of Eq. (15), which can
be interpreted as the average number of flips nspawns caused
by an initial spin flip within one time constant (as obtained
in the Appendix 7). Hence, using Eq. (13), one has

d�

2
¼ n2spawns; ð20Þ

so that after two time constants have passed, the residual
correlation would be reached if the functional form of
initial decorrelation would be extrapolated to later times,
neglecting saturating terms [see Fig. 6(a) and the
Appendix 5]. But because the residual correlation limits
the spread of the cascade of flips, in a similar way as the
population size limits the growth of an epidemic [36],
the growth slows down and asymptotically approaches the
residual correlation.

E. Same statistics, different chaotic dynamics in
continuously and discretely coupled networks

Having quantified how binary networks with discrete
signaling separate different states, as required to understand

TRANSIENT CHAOTIC DIMENSIONALITY EXPANSION BY … PHYS. REV. X 11, 021064 (2021)

021064-7



classification in reservoir computing (Fig. 1), we now turn
to the well-established alternative of units with continuous-
valued activity and signaling commonly referred to as “rate
models” and typically employed in artificial neuronal
networks. Concretely, we consider the coupled set of
stochastic differential equations [21,23]

τ∂th ¼ −hþ JTðhÞ þ ffiffiffi
τ

p
ξ ð21Þ

with the activation function T∶R → ½−1; 1� given by
Eq. (6), timescale τ, and a white noise process ξ with
hξiðtÞξjðsÞi ¼ σ2ξδðt − sÞδij. Chaos in such networks has
been intensely studied [21,23,32].
We show in Appendix 8 that the model-independent field

theory applied to this stochastic rate model yields the same
set of self-consistency equations for the first- (5) and
second-order statistics (9) as the binary model; also, the
conditions on Q∞ ≔ limτ→∞QðτÞ agree. In contrast to the
binary network, however, where the initial valueQð0Þ ¼ g2

is known, Eq. (9) must be solved with an initial condition
for the slope _Qð0þÞ. This slope is determined by the
variance σ2ξ of the noise in Eq. (21). Demanding identical
mean-field solutions for the two neuron types, the variance
of the noise follows as (see the Appendix 8)

σ2ξ ¼
2

τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Vg2ðQ∞Þ − Vg2ðg2Þ�

q
: ð22Þ

Equation (22) tells us that, given a pair of equivalent
activation functions (6), moments of connectivity ḡ, g2, and
timescale τ asynchronously updated binary networks are
statistically equivalent in DMFT approximation to rate
networks with appropriately chosen Gaussian white noise
input. This result is confirmed in simulations by comparing
the autocorrelation functions averaged across many neu-
rons in Fig. 5. The good agreement between the autocor-
relation that is averaged over all neurons in a network with
a single random realization of the coupling matrix and the
theoretical curves, which describe ensembles of networks
averaged over many realizations of the random couplings,
moreover shows that these quantities are self-averaging.

1. Condition for chaos in rate networks

Having established their equivalence on the level of
statistics, we now compare the chaotic evolution of binary
and rate networks. As its binary counterpart, the rate neuron
model can be studied in a replica calculation in dynamical
mean-field approximation, which yields the equation of the
cross-replica time-lagged covariance of the form [23,32]

ð∂t þ 1Þð∂s þ 1ÞQð12Þðt; sÞ ¼ g2fTðQ0; Qð12ÞÞ; ð23Þ

with fTðQ0; Qð12ÞÞ ¼ hTðx1ÞTðx2Þi, and the average is
taken with respect to ðx1; x2Þ ∼N ð0; ð Q0

Qð12Þ
Qð12Þ
Q0

ÞÞ. The

approximation for small differences Qð12Þ ¼ Q0 − ϵ to
linear order in ϵ is

ð∂t þ 1Þð∂s þ 1Þϵðt; sÞ ¼ g2fT 0 ðt; sÞϵðt; sÞ; ð24Þ
which is solved by

ϵðt; tÞ ¼ ϵð0; 0ÞeλmaxðgÞt; ð25Þ

where λmaxðgÞ is the largest Lyapunov exponent that follows
from an eigenvalue problem, see Sompolinsky et al. [21]
[their Eqs. (10) and (11)] and Schuecker et al. [23] [their
Eq. (17)]. The linear stability analysis in Eq. (24) leads to
the criterion for the chaos transition [23] [their Eq. (20)]

g2hTðhÞTðhÞih∼N ðR�;Q0Þ −Q0 ≥ 0: ð26Þ

2. No chaos in rate networks with matched statistics

Applying criterion (26) to a network of rate neurons with
the noise matched to its binary counterpart via Eq. (22), we
obtain Q0 ¼ g2 by construction. Using that hTðhÞTðhÞi ≤
1 because of jTj ≤ 1, we observe that the condition (26)
cannot be fulfilled. The dynamics is therefore always in the
regular regime because the frozen noise of amplitude given
by Eq. (22) is so large that it drives the dynamics and
suppresses chaos. Only asymptotically the chaos transition
is approached for an infinite slope of the activation
function, T 0 → ∞, or equivalently g2 → ∞.
Everything else being identical, the only difference

between the two models is the type of signals exchanged

FIG. 5. Matched second-order statistics in binary and rate net-
works. (a)Autocorrelation functions in simulations of binary (dark
orange dots) and rate networks (blue stars). Theoretical curve
(black) givenby the solutionofEq. (10).Noise amplitudeof the rate
network chosen by Eq. (22) to obtain matched statistics. Other
parameters: N ¼ 5000, g ¼ 1.5, ḡ ¼ 0, τ ¼ 1 ms, and TðhÞ ¼
tanhðh − ΘÞwithΘ ¼ 1.173 such that hxiN ðR;QÞ ≈ −0.5 according
to thestationarysolutionofEq. (5) (see theAppendix11fordetails);
simulationdurationT ¼ 5000 ms;autocorrelationaveragedacross
all neurons. We simulate a single realization of the binary network
for 5000 ms and average over five realizations of the rate network
running for 1000 ms each. We average over neurons in both cases.
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between units, either being discrete or continuous.
Therefore chaos in binary networks is intrinsically caused
by the discrete signaling. Formally, the difference between
the two forms of signaling here shows up in the effective
noise ξ: In the rate network, the realization of this noise is
identical across the two replicas, because it represents the
random realizations of the discrete variables of the binary
network whose statistics we want to match. In the binary
network, this noise itself changes, because it is intrinsically
generated by the discrete switching dynamics, so that the
realization is not external and frozen, but depends on the
microscopic state.

F. Qualitative differences of chaos between rate and
binary networks

In the following, we give up on matching the statistics
between rate and binary networks to discuss the qualitative
differences of the respective chaotic dynamics.

1. Residual correlation

The first qualitative difference concerns the residual
correlation of the replicas. Since there is no term ∝

ffiffiffi
ϵ

p
in Eq. (24), there is no residual correlation for small ϵ.
Furthermore, Eq. (23) is also valid for small Qð12Þ and
shows that the completely decorrelated state Qð12Þ ¼ 0 is
always a fixed point: The expectation value factorizes, and
for any point symmetric T, the right-hand side vanishes. In
the thermodynamic limit, the residual correlation in rate
networks is thus zero for any g > 1. A network that has
been infinitesimally perturbed eventually has a state that is
completely uncorrelated to the unperturbed system.
Trajectories in rate networks of finite size, in fact, show

very small residual correlation closely beyond the edge of
chaos g2 ≳ 1. However, as already noted by Sompolinsky
et al. [21], the transition at g ¼ 1 is not completely sharp in
finite-size networks (see also Ref. [37]). For larger net-
works, however, the residual correlation approaches zero;
this is in contrast to binary networks, which in otherwise
identical settings have a finite residual correlation (18) even
in the large-N limit.
This qualitative difference is shown in Fig. 6: In binary

networks, the decorrelation between the original and the
perturbed system dðtÞ=N ¼ 1 −Qð12Þðt; tÞ=Q0 in the long-
time limit saturates below unity, on a level that depends on
the coupling g by Eq. (18) and is bounded by 8=π2 ≃ 0.81
in the limit g → ∞, compare the Appendix 5. The quantity
dðtÞ=N can also be interpreted as the relative dimension-
ality of the explored space. In rate networks with otherwise
identical parameters, the relative decorrelation reaches
unity independent of g. The decorrelation in rate networks
cannot be interpreted in terms of dimensionality, however.
Indeed, a recent work demonstrates a structured chaotic
attractor in such networks [38].

2. Transient of decorrelation

The second qualitative difference concerns the transient
of decorrelation. The solution (19) shows that the character-
istic timescale of decorrelation is 2τ, where τ is the average
interval between two state changes of a neuron, exposing
that the microscopic state drives the chaotic evolution.
Decorrelation slows down only mildly for weaker coupling
g, as shown in Fig. 6(a). Moreover, it has a finite slope
shortly after the infinitesimal perturbation of the system,
reflecting the infinite Lyapunov exponent.
In rate networks, the maximal Lyapunov exponent

λmaxðgÞ is finite and depends continuously on the coupling
g. Decorrelation therefore starts with a vanishing speed for
infinitesimal perturbations, well described by the exponen-
tial behavior (25), as shown in Fig. 6(b). The time to reach a
given level of decorrelation, moreover, strongly depends on
the coupling strength g corresponding to a critical slowing-
down at the transition to chaos, which does not occur in
binary networks.

G. Computation by transient chaotic
dimensionality expansion

We now return to the question how the separation of
trajectories by the chaotic dynamics of binary networks
affects computation in a setting of reservoir computing
(Fig. 1). We investigate the network performance in a
pattern classification task: We consider P fixed patterns
numbered by the index 1 ≤ α ≤ P, each given by a
randomly drawn binary vector of length L. Noisy realiza-
tions of a pattern are then created by adding Gaussian
independent noise of variance σ2 to each entry of the
original pattern, creating P classes of noisy pattern real-
izations. The network is prepared at t ¼ 0 in a fixed initial
state consistent with its stationary statistics. A noisy pattern
is presented to the network as the initial state of a (fixed)

(a) (b)

FIG. 6. Discrete chaos versus continuous chaos. (a) Evolution
of the decorrelation between replicas in the binary network (19)
with T ¼ tanh. Increasing coupling strength from dark to light
gray, g ¼ f0.5; 1; 2; 3; 5g. Dark orange curves: limit g → ∞ or
Heaviside T (dashed); quadratic solution for nonsaturated growth
derived in the Appendix 5 (dotted). (b) Evolution of decorrelation
between replicas in the rate network (21) obtained by numerical
solution of Eq. (24) (details in the Appendix 6). Color code as in
(a) but using parameters g ¼ f1.1; 1.5; 2.5; 5.10g and initial
decorrelation of 2% instead of 0%.
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subset of L of the N neurons. The corresponding network
state is denoted as xαðtÞ. At each time t, we train one linear
readout Sα0 ðtÞ ¼ wα0 ðtÞTxαðtÞ per pattern class α0 by linear
regression to provide the output Sα0 ðtÞ ¼ 1 if the α0th
pattern has been presented (α ¼ α0) and 0 else (α ≠ α0; see
the Appendix 10 a for details). Thus, we have P readouts,
one for detecting each of the presented patterns (one-hot
encoding). Classification is performed by selecting the
strongest readout signal. Additional noise sources are
present at the readout and classification to ensure robust-
ness. The setup, training, and following theory are detailed
in the Appendix 10.
Clearly, the set of possible trajectories resulting from the

different initial-state preparations has dimensionality
dsð0Þ ¼ L at t ¼ 0. The linear separability of pattern
classes is thus initially low if L ≪ P ≪ N . From
Sec. II D, we know that the chaotic dynamics will quickly
increase the dimensionality of the state space that encodes
the patterns, eventually approaching that of the chaotic
submanifold dsð∞Þ ¼ d�. To explain the effect on the
separability of patterns and the classification performance,
we must distinguish between the dimensionality of the total
set of trajectories (including all patterns and their noisy
variations) referred to as the signal dimensionality dsðtÞ,
and the dimensionality of the set of trajectories given by
noisy variations of a single pattern referred to as the noise
dimensionality dnðtÞ. Let us at first neglect the noise. With

the increase of dsðtÞ, the linear separability of patterns also
increases. From the property of the linear regression, this
means that the average readout signal SαðtÞ of the correct
pattern class α increases; if network responses were
pairwise orthogonal, which to good approximation is
satisfied in the high-dimensional signal subspace, the
maximal attainable signal would be

ŜαðtÞ ¼
dsðtÞ
P

;

as shown in the Appendix 10 b.
However, also the noise dimensionality dnðtÞ spanned by

all noisy realizations of the same pattern increases in the
same way as dsðtÞ due to the chaotic dynamics, as shown in
Fig. 7(b). But dsðtÞ has a head start because noisy
realizations of one pattern are more similar to each other
than to other patterns. Now let us assume that different
noise realizations cause different responses that lie entirely
within and are uniformly distributed across the signal
subspace. This means that the noise randomly flips a
number of spins that encode the pattern and thus effectively
reduces the dimensionality of the space that faithfully
encodes the signal. The effective dimension of the space
that is available to represent the signal is then

ΔdðtÞ ¼ dsðtÞ − dnðtÞ: ð27Þ

(a) (b) (c)

FIG. 7. Transient dimensionality expansion of stimulus representation by a chaotic binary network. (a) Time evolution of the first 50
neurons for two different patterns of initial states; up transitions in red, down in blue. Initial state of first L ¼ 10 neurons set to one of the
P ¼ 50 fixed, random patterns. The initial state of the remaining neurons is kept constant. (b) Evolution of signal and noise subspace
dimensionality. Dimensionality dsðtÞ given by Eq. (17) explored by the network across different patterns [green solid curve, using
averaged simulated distances across all pairs of patterns; dashed curve, theory (19)]. Dimensionality dnðtÞ explored across different
noisy realizations of a pattern [dark orange solid curve, using averaged simulated distances across all pairs of 20 realizations per pattern;
dashed curve, theory (19)]. Noisy realizations of patterns have Gaussian noise with standard deviation σ ¼ 0.3 added to each of the L
entries of the initial pattern state. Difference between signal and noise dimensionality (blue, theory is dashed). (c) Linear readout
Sα0 ðtÞ ¼ wα0 ðtÞT ½xαðtÞ þ ξpre� þ ξpost trained for each time point t to detect stimulus identity by minimizing the quadratic errorP

αðSα0 − δαα0 Þ2 for the correct stimulus α ¼ α0 (blue) and nonmatching stimuli α ≠ α0 (dark orange). Error bars show the variability
across patterns and noise realizations, excluding ξpost. Theoretical prediction (28) (dashed blue). Readout by the theoretical weight
vector (A47) using the approximation (A50) (light blue). Inset: classification accuracy of the initial input stimulus based on choosing the
readout with largest signal for trained readouts (blue) and approximate readouts (light blue), including ξpost. The approximate readout
vectors yield a higher average signal, but also the variance is higher (not shown) resulting in slightly worse classification accuracy. Other
parameters:N ¼ 500 neurons, coupling strength g ¼ 0.8, prereadout noise σξ;pre ¼ 0.1, and postreadout noise σξ;post ¼ 0.1 as detailed in
the Appendix 10. The training set comprised 100 noisy realizations of each pattern and the test set 20. All theoretical curves are
corrected for the probability that a noise realization does not leave the original flux tube; see the Appendix 10 c.
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The expected signal is then given by

SαðtÞ ¼
dsðtÞ − dnðtÞ

P

¼ dsðtÞ
P

�
1 −

dnðtÞ
dsðtÞ

	
: ð28Þ

This approximate expression overestimates, but captures
quite well the overall shape of the average readout signal
shown in Fig. 7(c): Initially, the signal rises in relation to
the ratio of dimension of representation space and number
of patterns, but ultimately, the signal declines, because the
dimensionality spanned by the noise approaches that
spanned by the signal. As seen in the inset of Fig. 7(c),
the classification accuracy mirrors the behavior of the
average readout signal. This transient increase of the linear
separability of the pattern classes is rooted in the property
of the system that the signal dimensionality initially rises
faster than the noise dimensionality.
For small initial dsð0Þ and in the limit of vanishing noise

dnð0Þ↘0, the maximum of Δd ¼ ds − dn, and therefore
Sα, is reached at t̂ ≃ 2 ln 2τ ≃ 1.39τ [details given in the
Appendix 5, Eq. (A29)]; the peak time depends only
weakly on g, as shown in Fig. 8(a). The improvement of
the separability due to the transient expansion, the maxi-
mum Δdðt̂Þ compared to its initial value at t ¼ 0, is given
by Eq. (A30)

Δdðt̂Þ
Δdð0Þ ≃

1

2

ffiffiffiffiffiffiffiffiffiffiffi
d�

dsð0Þ

s
þ 1

4

¼g→∞ 1

π

ffiffiffiffiffiffiffiffiffiffiffi
2N
dsð0Þ

s
þ 1

4
;

where the latter expression is the limit of g → ∞ of the
former. The improvement of the signal scales with N

1
2 and

dsð0Þ−1
2, as shown in Fig. 8(b). The theory slightly under-

estimates the maximum of Δd in simulations, but captures
the scaling relation, predicting a slope of approximately
1=2. So the peak classification accuracy can be improved
by larger networks.
Note that in Fig. 7(c), neither in theory nor in the

simulation does the average signal drop to zero for t → ∞.
In Fig. 7(b), the noise curve saturates to a smaller value than
that of the signal; this is because not all noise realizations
leave the flux tube of the original pattern, so that the
average distance between realizations remains smaller than
that between patterns (analyzed in the Appendix 10 c).

H. Generalization to other network models: Transient
chaotic SNR amplification

The computational effect described in the last section
relies on two factors: first, a high-dimensional space in
which trajectories are nonlinearly embedded, and second,

the decorrelation dynamics [Eq. (12) and Fig. 7(b)] that
causes a small deviation to initially grow slower than a
larger deviation. In the setting of a classification task, this
mechanism thus enhances the signal-to-noise ratio (SNR).
The first factor is a general feature of all nonlinear

neuronal networks. The second factor, we conjecture,
should also be a typical property of chaotic networks,
because the expansion of distances between three arbitrary
trajectories should imply the largest distance to grow faster
(in absolute terms) than the two smaller distances, as by a
triangle inequality. Therefore, we expect the transient
disentanglement of pattern classes to be a general phe-
nomenon in strongly chaotic neuronal networks. To sub-
stantiate this claim, we demonstrate this effect in rate
networks, and, in a proof-of-principle manner, in a spiking
leaky-integrate-and-fire (LIF) network and a LSTM net-
work [39].

1. Rate networks

A network of stochastic rate units with first- and second-
order statistics matched to those of a binary network, as in
Sec. II E, has a classification performance close to zero, as
shown in Fig. 10(a). This is because the matched stochastic
rate network is not chaotic; trajectories for different
presented patterns converge. A small readout noise thus
destroys classification accuracy.
However, how is the performance in the chaotic regime

of a rate network? For this, we no longer consider matched
statistics and from here on again use rate networks without
effective noise and g2 > 1, which are chaotic [21].

(a) (b)

FIG. 8. Optimal expansion within 2 ln 2 neuronal activations.
(a) Effective dimension ΔdðtÞ (27) relative to initial Δdð0Þ for
vanishing initial noise amplitude dnð0Þ↘0. Maxima at
t̂ ¼ 2τ ln½1 − ð1 − δÞ2=δ�, δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dsð0Þ=d�
p

(A28) marked by
crosses. The time to maximum for weak initial stimuli δ ≪ 1

is well approximated by t̂ ≃ 2 ln 2τ (vertical dashed line). From
dark to light gray: g ¼ 0.5, 1, 2, 3, 5 and tanh gain function;
dashed dark orange curve, Heaviside gain function, limit g → ∞.
Initial parameter N=dsð0Þ ¼ 200. (b) Maximal effective dimen-
sion Δdðt̂Þ relative to initial Δdð0Þ as a function of N=dsð0Þ.
Same color code as (a). In blue, corresponding simulation results
averaged over ten connectivity seeds each and corrected for the
probability that a noise realization does not leave the original flux
tube; see the Appendix 10 c. Values of g from dark to light
as in (a).
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Similar to binary networks, finite-size chaotic activity
[Fig. 9(a)] in rate networks shows a transiently smaller
difference between noisy realizations of a pattern than
between patterns in the classification task, as shown in
Fig. 9(b). This also follows from Eqs. (24) and (25) since
the acceleration of the decorrelation is smaller for smaller
initial ϵ, making the noise distance grow slower than the
signal distance.
Decorrelation in the rate network, however, can take

many neuronal time constants if the network is in the mildly
chaotic regime [Fig. 9(b)]. The timescale sensitively
depends on the recurrent coupling strength, as shown in
Fig. 6(b). This can be understood in terms of the decay
constant of the time-lagged autocorrelation function: In a
noiseless rate network, the timescale of the autocorrelation
diverges at the transition to chaos [21].
In the rate network, classification performance jumps to

a high value already after the first time step [Fig. 10(c)].
The reason is that all neurons’ states are immediately
nonlinearly affected by the input pattern. The stimulus is
thus immediately projected nonlinearly into an N-dimen-
sional representation that allows linear classification. This
becomes apparent by considering that in the time step after
stimulus presentation, the input to the network contains a
term ∝ ðδt=τÞPj JijTðhjð0ÞÞ.

But even though the dimensionality is immediately N
dimensional, the amplitude grows continuously with time
and is thus very small at first, ∝ δt. This behavior exposes
the qualitative difference in the interpretations of ϵ: In
the binary network, there is a direct link between ϵ and the
dimensionality of the signal space, while in the rate
network, ϵ is a measure of the Euclidean distance between
trajectories and is only very indirectly related to the number
of dimensions across which this distance is distributed.
Hence, the difference between inter- and intrapattern
distances in Fig. 9(b) peaks at a later time point than the
classification accuracy in Fig. 10(b), because the rate
network performs a transient signal amplification rather
than a transient dimensionality expansion as in the binary
network case.
Even though the dimensionality of the representation

immediately after stimulus presentation equals N, distances
between stimuli in the new directions are small at first. The
classification in the rate network therefore relies on fine-
tuned and very large readout weights in the beginning
[Fig. 10(d)]. Therefore, the initial classification accuracy is
severely impaired by adding even weak noise to the readout
[Fig. 10(c)]. This addition of noise, in turn, results in a peak
of the accuracy predictable by the theoretical peak in signal
amplification [Fig. 9(b)].
In summary, rate networks with continuous signaling

perform a transient amplification of the signal-to-noise
ratio, rather than a transient dimensionality expansion.
Compared to binary networks with discrete signaling,
the resulting empirical differences are the strong depend-
ence of the decorrelation timescale on the coupling
strength, the existence of a minimal coupling strength
required for amplification, the absence of the residual
correlation, and the initial high sensitivity to readout noise.

2. Spiking networks

To demonstrate that the same computational effect
translates to spiking networks which are furthermore not
all-to-all connected, we consider the same task in a purely
inhibitory network of LIF neurons with fixed in-degree in
the asynchronous-irregular firing state. Trajectories in these
networks are known to have a small stable local environ-
ment (flux tube) but exhibit chaos for perturbations leaving
the flux tube [34,40], just as the binary networks considered
in this manuscript. In the binary networks, the flux-tube
borders are given by input perturbations that are just
sufficient to cause a single spin to flip. By binning the
spike trains of the LIF network with a bin width equal to the
membrane time constant, we obtain approximately binary
vectors if the bin width is small compared to the inverse
firing rate. Therefore, we can use the same training and
analysis procedure as for the binary networks, and also
interpret distances in terms of dimensionality. Further
details are given in the Appendix 11. The LIF network
dynamics and performance show the same features found in

(a)

(b)

FIG. 9. Evolution of trajectories in a chaotic rate network.
(a) Chaotic network activity for N ¼ 250, g ¼ 5.8, σ2eff ¼ 0, and
TðhÞ ¼ tanhðhÞ. Gray scale shows the activity of each neuron
between −1 (white) and 1 (black). (b) Time evolution of average
distances between patterns (green) and between noisy realizations
of a pattern (dark orange). Difference between signal and noise
distances (blue). Numerical solutions of Eq. (24) (dashed); for
details, see the Appendix 6. Network as in (a) and P ¼ 50,
L ¼ 10, σ ¼ 0.3.
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binary networks: Distances between states quickly grow
toward a residual correlation (Fig. 11). Dimensionality
expansion takes place on a timescale within which each
neuron fires only a single spike or less on average
ðν−1 ≃ 55 msÞ. The distance between pattern classes ini-
tially grows faster than the noise distance [Fig. 11(b)], and
the readout signal and classification performance show a
corresponding transient peak [Fig. 11(c)]. As in the binary
network, some noise realizations do not leave the flux tube
of the unperturbed pattern, causing a reduced long-term
average noise distance and a nonzero plateau of the residual
classification performance.

3. LSTM networks

Finally, to demonstrate the existence of the computa-
tional effect in a powerful specialized machine-learning
architecture, we consider the same task in a recurrent
LSTM network [39]. The architecture is similar to the rate
networks we consider but contains a large number of
additional dynamical “gating” variables which control
when, where, and by how much the cell states interact
with each other, resulting in considerably more complex
dynamics than in a rate network with fixed coupling matrix.
We use a vanilla pytorch implementation, choosing the
initialization parameters such that the network exhibits
spontaneous chaotic fluctuations over a moderate range of
timescales, as seen in Fig. 12(a). Details about the param-
eters and task implementation are given in the
Appendix 11. In Figs. 12(b) and 12(c), we see a behavior
in close analogy to that shown in Figs. 9(b) and 10 for rate
networks. Signal and noise distances increase differentially
fast, and there is a pronounced transient peak in the
classification accuracy. Other than in the binary and LIF
networks, which use discrete signaling, the rate and LSTM
networks do not have locally stable flux tubes and no
residual plateau in the classification performance.

(a)

(c) (d)

(b)

FIG. 10. Stimulus representation in a rate network. (a)–(c)
Signal of correct readout (blue), signal of wrong readouts (dark
orange), and classification accuracy (inset). (a) Including noise σ2ξ
matched to the statistics of a binary network according to
Eq. (22). Parameters otherwise as in Fig. 9. Because the frozen
effective noise suppresses chaos, trajectories for different stimuli
converge toward the same state, and a small readout noise
σreadout ¼ 10−4 results in classification at chance level. (b) Re-
moving the noise in the network, and no readout noise. The
network is chaotic as in Fig. 9, and classification accuracy jumps
to 1 in the first time step. (c) Including readout noise σreadout ¼
10−4 impedes classification accuracy until trajectories are suffi-
ciently separated. (d) Average norm of individual readout weights
for the setting in (b). Since trajectories are very close in the initial
time period [compare also Fig. 9(b)], initial readout weights are
very large, explaining the sensitivity to readout noise in (c).

(a) (b) (c)

FIG. 11. Transient chaotic dimensionality expansion in a spiking network. (a) Raster plots of spiking activity in the network for two
different patterns; average firing rate per neuron ν ≃ 19 Hz. Parameters N ¼ 500, in-degree K ¼ 125, weights Jii ¼ −1.0 mV, and
membrane time constant τm ¼ 10 ms; additional detail given in the Appendix 11. (b) Evolution of average Euclidean distance between
different patterns (green), noisy realizations of a pattern (dark orange), and the difference of the two (blue). (c) Signal of matching
readout (blue), nonmatching readouts (dark orange), and classification performance (inset).
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III. DISCUSSION

This manuscript compares the effect of discrete and
continuous signaling on the dynamics and function of
neuronal networks. Focusing on binary classification as a
fundamental computation, it addresses the question how the
temporal dynamics can be used to represent stimuli.
Separating representations translates into asking how state
trajectories diverge or converge if different stimuli are
presented. Technically, this amounts to quantifying chaos
in such networks.
A model-independent path-integral approach enables

comparisons across models. We find that the dynamic
mean-field theory is of identical structure for networks of
binary units and for continuous-rate networks. In binary
networks, we discover a network-size-dependent transition
to chaos and the existence of a chaotic submanifold. We
elucidate the qualitative differences to chaos in rate net-
works in terms of the mechanism causing chaos, time-
scales, and parameter regimes.
Applied to classification, chaotic dynamics causing a

relative dimensionality expansion of representations leads
to a mechanism of fast and transient computation in binary
networks with discrete signaling. We describe a generali-
zation of this effect as a transient signal-to-noise amplifi-
cation in chaotic rate networks with continuous signaling.
The remainder of the discussion puts these results into

context of the literature, mentions limitations, and provides
an outlook.

A. Differences and similarities across neuron models

1. Transition to chaos in binary networks at finite size

We demonstrate that there is a transition to chaos in
finite-size binary networks described by a field-theoretical
replica calculation. Our results are consistent with works on
sparse random boolean networks with synchronous update

showing a chaos transition for in-degree K ¼ 2 [33,41],
which relates here to the transition at N ≈ 2 for the
Heaviside activation function. Derrida and Pomeau [33]
approximate the disorder by annealed averages and use
synchronous update, while we compute the quenched
averages and employ asynchronous update. In mean-field
theory, the in-degree in sparse networks plays a similar role
as the network size in dense networks. Other works that
investigated the edge of chaos numerically in discretely
coupled networks have also found small in-degrees as
critical coupling [18,20,42].

2. Correspondence of DMFT in binary and rate networks

The model-independent field theory presented here
exposes a one-to-one match of the stationary activity
statistics in dynamical mean-field approximation of binary
and rate networks. Exposing identities between neuron
models is useful to see if and how the results generalize.
Steps in this direction where already taken in Grytskyy
et al. [43], who showed that weak pairwise correlations can
be explained by linearizing LIF neurons, Hawkes proc-
esses, and binary neurons, mapping them to noisy linear
rate models. The results presented here are more general
since they apply not only to the linearization of the models
but hold for the nonlinear behavior as well. The equiv-
alence of time-lagged autocorrelations is shown here for
stationary statistics; for nonstationary dynamics also the
effective noise strength should vary as a function of the
time ([44], Chap. 6.4).

3. Assumptions on connectivity

The assumption of Gaussian connectivity Jij ∼
N ðḡ=N; g2=NÞ straightforwardly generalizes to other con-
nectivities, as long as higher than second cumulants are
suppressed by powers of N−1. Scaling the mean connec-
tivity as ḡ=N yields a consistent approximation in 1=N.

(a) (b) (c)

FIG. 12. Transient chaotic SNR amplification in a LSTM network. (a) Chaotic network activity of the first 50 units for two different
patterns. Parameters N ¼ 200 and g ¼ 5.8 for the hidden to input-, forget- and cell-gates weights and all other weights using a standard
Uð−N−1

2; N−1
2Þ distribution, with additional detail given in the Appendix 11. Gray scale shows the activity of each hidden unit between

−1 (white) and 1 (black). (b) Evolution of average Euclidean distance between different patterns (green), noisy realizations of a pattern
(dark orange), and the difference of the two (blue). The short initial decay in pattern distances is likely due to a short networkwide
contraction of the dynamics after pattern presentation caused by the interaction of the gating variable states and the L changed hidden
states. (c) Signal of correct readout (blue), incorrect readouts (dark orange), and classification performance (inset).
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Sparse connectivity, however, typically leads to a scaling
ḡ=

ffiffiffiffi
N

p
. Formally, a consistent treatment therefore requires

Gaussian fluctuations of themean activity field hR2i ∼ 1=N,
which is possible in the presented framework. Such fluctua-
tions are, however, suppressed by negative feedback [45] in
the inhibition-dominated (balanced) regime ḡ < 0. For
multiple populations, the DMFT equations acquire popula-
tion indices, but stay structurally the same (cf. Ref. [25] for
binary neurons andRefs. [32,46] for rate neurons). Scale-free
distributions of weights can violate the assumptions and
require a different approach [47].

4. Relation of the model-independent path-integral
formulation to earlier work

The seminal work by Sompolinsky et al. [21] on rate
neurons used statistical field theory [22], and the work by
van Vreeswijk and Sompolinsky [25] on binary neurons
relied on a disorder average of the master equation [27,28].
The statistical field theory that we develop here captures
both model classes and is similar to the Martin-Siggia-
Rose–de Dominicis–Janssen formalism [48,49] for rate
neurons (reviewed, e.g., in Refs. [50–52]). In particular,
this formulation exposes the identical structure of the
mean-field approximations.
Binary networks with asymmetric connectivity show

nonequilibrium dynamics, so that the Ising Hamiltonian
cannot be used. Instead, complete information about the
system dynamics needs to be captured. Full information is
supplied by the master equation, for which an established
approach is theDoi-Peliti formalism [53,54]. The fields in the
latter approach, however, have no intuitive physical inter-
pretation, even though they allow the construction of mean-
field equations and fluctuation corrections [55]. Closer to our
method are the approaches by Sommers [56], Andreanov
et al. [57], andLefèvre andBiroli [58],which can beobtained
as special cases from our formulation.

5. Different chaotic dynamics in binary and rate networks

Qualitative differences between chaos in binary and rate
networks can be summarized as follows: (i) Rate networks
with activity statistics matched to that of binary networks
are nonchaotic. This shows that discrete signaling provides
a different mechanism that drives chaos in binary networks,
and that the mechanism causing chaos in rate networks is
not effective in binary networks. A marginally chaotic
solution is approached in matched rate networks when
sending the activation function to the Heaviside limit. This
is consistent with the finding that rate networks are always
chaotic if the activation function has an infinite slope [32].
(ii) In the limit of large numbers of neurons (now
unmatched) rate networks have a critical coupling strength
beyond which they transition to chaos, while binary net-
works are always chaotic in this limit. At finite network
sizes, binary networks have a size-dependent, critical

coupling strength, which is typically very low.
(iii) Decorrelation of trajectories in binary networks is
generally faster than in rate models. In binary networks, it
takes place on a timescale given by the interval between
state changes of individual neurons and is only mildly
affected by the network coupling. In rate models, it strongly
depends on the coupling strength showing a critical slow-
ing-down at the transition to chaos. Stochasticity gradually
smooths out this divergence [23]. (iv) Trajectories in binary
networks decorrelate only up to a residual correlation,
while those in rate networks completely decorrelate.
(v) Binary networks have an infinite Lyapunov exponent,
so that decorrelation starts off with a finite slope even for
infinitesimal initial perturbations. In rate networks, the
initial decorrelation is an exponential function, whose slope
therefore vanishes for infinitesimal perturbations.

6. Origin of the difference

In the rate network, the noise is external and frozen,
but a binary network’s noise realization depends acutely
on the initial value of the system. Thus, perturbing the
initial value also changes the noise realization. In
particular, due to the thresholding operation that produces
the discrete signal, a tiny perturbation in the input can
cause a flip of the neuron, and consequently, a macro-
scopic change of the network state; the probability that
this change happens increases with the number of targets
that receive this perturbation, thus, with network size.
This increase is due to the strong synapses jJijj ∝ N−1

2

(for ⟪J2ij⟫ ∼ gN−1). For large networks, the growth of the
perturbation corresponds to a macroscopic change in the
noise realization.
The presented replica calculation provides a comple-

mentary explanation for the qualitative difference between
binary and rate neurons. The question of a chaos transition
is reduced to studying how correlations are transferred from
the inputs of a pair of neurons to their outputs: The change
of the correlation between replicas is proportional to the
mismatch between the correlation at time t, the second line
on the right of Eq. (11), and the correlation transmitted
through a pair of neurons and connectivity given by the
third line, a function coutðcinÞ. Such a transmission curve
coutðcinÞ is shown for discrete signaling and for continuous
signaling in Fig. 13. Clearly, if coutðcinÞ < cin for a cin close
to perfect correlation just below unity, the correlation
decreases over time, the dynamics is chaotic; if
coutðcinÞ > cin, the correlation regenerates, the dynamics
is regular. While the slope c0outðcin → 1) for discrete signal-
ing diverges as ∝ ð1 − cinÞ−1

2, it stays finite for continuous
signaling. The infinite slope for networks with discrete
signaling leads to an infinite Lyapunov exponent for
N → ∞. For continuous signaling, the slope is finite as
long as the slope of the activation function is bounded,
resulting in finite Lyapunov exponents. This analytical
view of the different transitions to chaos in continuous and
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discrete networks is also consistent with numerical find-
ings [59].
Correlation transmission by pairs of neurons is well

studied experimentally and theoretically; e.g., Refs. [60–63].
A diverging slope of the correlation-transmission curve,
shown here for binary neurons, has also been demonstrated
for spiking neurons without reset [62] and for the LIF
model [61,64–66], suggesting that these model classes
behave similarly with regard to the transition to chaos.

7. Flux tubes in binary and spiking networks

There is a tight link between the replica calculation and
chaos in spiking networks examined in terms of the
divergence rate between flux tubes [40]. Flux tubes are
neighboring portions of the phase space within which
perturbations of the state do not cause a global change
of subsequent activity [34]. Binary neurons are formally
simpler than spiking models, because one can investigate
changes of network states directly instead of analyzing
spike patterns (see the Appendix 7), binary neurons do not
have additional internal degrees of freedom, such as the
membrane potential, and their activation times are given by
predetermined update times. Therefore, perturbations
inside a flux tube are not forgotten exponentially as in
LIF neurons, but instantly. Just like in LIF networks, the
distance to a flux-tube boundary shrinks with network size
as 1=N. The divergence rate between flux tubes scales asffiffiffiffi
N

p
, as opposed to N in the LIF network [40]. Both are

consistent with an infinite Lyapunov exponent for N → ∞.
Chaotic spiking activity has also been investigated in Lajoie
et al. [67,68], who showed that chaotic quadratic-integrate-
and-fire networks exhibit a reduced spike pattern entropy,
indicating that they explore only a lower-dimensional
manifold in phase space.

B. Computation in the chaotic regime

1. Transient chaotic SNR amplification

We find that strongly chaotic neuronal networks of
different types invariably exhibit a transiently improved
separability of low-dimensional inputs. This is at first sight
surprising, because chaotic dynamics amplifies noise as
well as informative differences. However, the variability
within a class (noise) is typically smaller than the variability
across classes. We find the latter to be amplified more
strongly than the former, thus improving the linear sepa-
rability of the classes. We argue that this relative ampli-
fication is a general effect in nonlinear, high-dimensional
chaotic systems. There is an analogy to astrophysics: Space
in the Universe is locally expanding everywhere. Thus, all
points are drawn apart, forming diverging trajectories. As a
result of the ubiquitous expansion, galaxies move apart ever
faster the greater the distance between them, as described
by the Hubble constant. In the same way, trajectories in the
network that are farther apart (different classes) separate
faster than trajectories that are initially closer (noisy
realizations within the same pattern class). Unlike the
Universe, however, the network state space is higher
dimensional and inherently expands along highly curved
directions. Therefore, the faster expanding, larger
differences are also more strongly affected by the non-
linearity and are more quickly embedded into the surround-
ing higher dimensions. Also, unlike the Universe, the state
space volume of the network is finite and constant, so some
directions must shrink to conserve the total volume.
Trajectories therefore do not diverge indefinitely but reach
a stable average distance determined by the volume of the
limiting chaotic attractor. They continue to be mixed by the
expanding and shrinking dynamics, such that information
about their initial distance relations is eventually forgotten
and classification performance subsides.

2. Elucidation by dimensionality in binary networks

This qualitative picture is made concrete in binary
networks: Their discrete state space allows an interpretation
of the growing average distances in terms of dimension-
ality. This allows us to express the improvement of
classification accuracy in terms of the difference between
the dimensionality of the representation of the signal ds and
the number of dimensions corrupted by noise dn. Their
temporal evolution follows stereotypic decorrelation curves
obtained from a replica calculation. Dimensionality and
separability are linked, because each dimension allows the
linear separation of two additional random features [16,69].
The effect can also be viewed as a dynamical version of the
usually statically applied kernel trick [15].

3. Relation of chaos and computational power

It has been argued that close to the edge of chaos,
networks show an optimal trade-off between separation of

FIG. 13. Correlation transmission by a pair of neurons. Corre-
lation coefficient cout between outputs as a function of the
correlation coefficient cin between inputs. Discrete signaling
[dark orange, Eq. (A44)]; continuous signaling [blue, Eq. (A41)].
Approximation for discrete signaling in the limit cin → 1 (dashed
dark orange) shows a behavior of the form ∝ −ð1 − cinÞ12, so the
slope diverges as ∝ ð1 − cinÞ−1

2. For comparison: identity map-
ping with unit slope (black line).
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stimuli and generalization [17,18,20,31]. Our analysis
provides a time-dependent perspective on this hypothesis.
Indeed, the signal and noise dimensionalities that approxi-
mate the classification performance can be compared to the
kernel quality and generalization rank (Vapnik-
Chervonenkis dimension [15]) measures introduced by
Legenstein and Maass [20]. Our results show that binary
networks generally have a short memory lifetime. But in
contrast to rate networks, it also does not reduce strongly
when moving deeper into the chaotic regime. For tasks that
require only short memory, performance can benefit from
the increased separation even deep in the chaotic regime, in
particular because the peak of the informative dimension-
ality maxðds − dnÞ increases with network size. This is in
line with the results of Snyder et al. [42], where for small
readout delay, performance stays high when increasing the
in-degrees [e.g., their Figs. 3(a) and 3(b)]. Overall, these
observations raise the question whether the effect could be
combined with a prolonged memory lifetime, for example,
by heterogeneous time constants of neurons or synapses,
clustered connectivity [70], or by feeding the readouts back
into the network.

4. Other related works

Recurrent networks can be transformed to deep feed-
forward networks with weight sharing by “unrolling” them
in time. Successive layers then correspond to adjacent time
steps in the recurrent network. Chaotic iterative maps were
shown to yield an increase of the dimensionality of
representations toward deeper layers [71]. Training spe-
cifically on low-dimensional representations yields facili-
tated feature generation by dimensionality expansion in
early layers and feature selection and generalization by
dimensionality suppression in later layers [72]. Farrell et al.
[73] investigated (continuous) recurrent networks in a
classification task similar to ours, also considering the
strongly chaotic regime. They focused on late-time com-
pression of the representation by training and found that
chaos benefits learning of the task, for which our results
provide a principled explanation. Their results provide
clues on how training interacts with the random connec-
tivity, an interesting avenue for future work.
The mechanism of transient computation we investigate

coexists with non-normal amplification [74–77], which is
caused by effective feed-forward structures embedded in
nonorthogonalizable coupling matrices. Non-normal
amplification is especially strong in the chaotic regime
[74]. The here described mechanism, however, also applies
to normal matrices. Finally, recent developments in stat-
istical mechanics of computation in neuronal networks are
reviewed by Bahri et al. [78].

5. A mechanism of fast computation in spiking networks

The peak classification performance in binary reservoirs
is reached on the scale of a single neuronal time constant

after stimulus onset. This scale also holds approximately in
the LIF network. However, the peak time can likely be even
shorter for higher in-degrees or firing rates, as these
influence the divergence rate of flux tubes in such networks
[40]. The mechanism may explain how computation can
spread rapidly through the hierarchical networks of the
brain: The time window corresponds to one activation per
contributing neuron on average, allowing the fast feed-
forward processing latencies of≲50 ms per stage measured
experimentally in cortical areas [79,80]. This perspective
suggests how networks that employ discrete communica-
tion may compute rapidly on the basis of a few spikes rather
than requiring a prolonged averaging over time. A possible
impediment to computation in a chaotic system is its
sensitivity to initial conditions, which, apart from the input
patterns, are kept fixed in this manuscript. One solution
would be a mechanism which quenches variability at
appropriate times. Another possibility was exposed by
Lajoie et al. [81], who showed that chaotic spiking
networks can reliably encode inputs despite changing
initial conditions, because each input confines the chaotic
activity to a different manifold.

6. Experimental evidence and predictions

The olfactory system is a potential candidate to rely on
the transient computational mechanism we describe,
because it is specialized on classification of patterns with-
out a temporal component. In the vertebrate olfactory bulb,
an odor activates a comparably low-dimensional pattern of
glomeruli, the input layer to a higher-dimensional recurrent
network that needs to separate representations to enable
classification of odor identity by subsequent processing
stages. The insect antennal lobe shares this basic organi-
zation. Recordings in the olfactory systems in zebrafish
[82], locust [83], and rats [84] show a representation of
stimuli that is consistent with the here found mechanism of
transient dimensionality expansion.
In zebrafish, the activities of mitral cells in the olfactory

bulb show a high correlation for similar odors shortly after
stimulus presentation. Subsequently, they decorrelate on a
timescale of approximately 800 ms, reaching a residual
correlation of about 40% [see Ref. [82], Fig. 2(e)]. The
discriminability of these similar odors by a linear readout
from the mitral cells improves within the same time span
to nearly error-free classification [see Ref. [82], Fig. 2(i)].
In the process, the population statistics stays approxi-
mately constant. These features are in line with transient
dimensionality expansion, except that the classification
accuracy does not decline again after the improvement.
However, this missing decline could be caused by feed-
back stabilizing the representation after recognition or be
related to the sustained presentation of the odor stimulus.
Recordings in the locust antennal lobe show qualitatively
similar behavior [83]. In particular, these experiments
report a decoding accuracy that is highest within the
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transient phase. In the rat olfactory bulb, inhalation also
triggers a fast decorrelation transient of approximately
100 ms, during which, odor identity is encoded in the
instantaneous spike pattern, and decoding accuracy rapidly
peaks after approximately 70 ms before declining to a
lower level [84]. Future work should systematically inves-
tigate if the dynamics in these biological systems is in fact
chaotic, for which, suitable analysis methods are avail-
able [85,86]. Also, the analysis of inter- and intraclass
distances and classification by linear readouts is applicable
to experimental spiking data. The computational mechanism
we describe needs a reliable initial state from which
trajectories diverge. In the rat olfactory system, this reset
could be tied to inhalation onset. In cortex, stimuli seem to
quench the variability of spontaneous activity to evoke
relatively low-dimensional responses [87–90]. To check
for chaotic dynamics, one could therefore analyze the growth
of intertrial variability during and after stimulation offset.We
finally list concrete testable predictions for neural systems
that implement classification by transient chaotic dimension-
ality expansion:

(i) Variability is small or quenched at stimulus onset,
then transiently increases and reaches a stable value.

(ii) Not only the interclass distances but also the intra-
class (noise) distances increase, although initially
slower.

(iii) Decoding accuracy based on linear readouts trained
at each time point shows a peak, and this peak occurs
before the distances saturate.
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APPENDIX

1. Model-independent mean-field theory
for random networks

This section presents a self-contained derivation of the
model-independent mean-field theory for networks with

Gaussian random connectivity Jij ∼
i.i.d.N ðḡ=N; g2=NÞ. The

N neurons have inputs hðtÞ ¼ ½h1ðtÞ;…; hNðtÞ� and out-
puts xðtÞ ¼ ½x1ðtÞ;…; xNðtÞ�, and the neuronal dynamics is
described by the conditional probability functional ρ½xijhi�.
For deterministic neurons, where xi ¼ f½hi� is some
causal functional of the input, one may set ρ½xijhi� ¼
δðxi − f½hi�Þ. We use vectorial notation to denote

ρ½xjh� ¼
YN
i¼1

ρ½xijhi�; ðA1Þ

because, given their inputs fhig, neurons are otherwise
pairwise independent. The probability functional ρ½xijhi� is
assumed to be strictly causal, which is, xiðtÞ is independent
of hiðs > tÞ; a more explicit notation would be
ρ½xið∘þÞjhið∘Þ� denoting that the time argument xiðtþ ϵÞ
must be infinitesimally advanced by ϵ > 0 compared to the
argument of hiðtÞ for ρ to depend on h.
The joint statistics of input and output is then

ρ½x; h� ¼ ρ½xjh�ρ½h�: ðA2Þ

The distribution of the inputs h is given as the marginali-
zation over x as

ρ½h� ¼
Z

Dxρ½x; h�

¼
Z

Dxρ½xjh�ρ½h�: ðA3Þ

The connectivity J couples the outputs x of the neurons to
the input h as

hðtÞ ¼ JxðtÞ:
So, in the marginalization (A3) over x, we need to set

ρ½hð∘Þjxð∘Þ� ¼ δ½h − Jx�

¼
Z

Dĥ expðĥThÞ expð−ĥTJxÞ; ðA4Þ

where the path-integral measure is
R
Dĥ ¼Q

t

R
i∞
−i∞½dĥðtÞ=2πi�, and the inner product is meant as

ĥTh ¼ P
N
i¼1

R∞
−∞ dtĥiðtÞhiðtÞ. By connecting the outputs

back to the inputs, Eq. (A2) may seem to take a circular
structure like ρ½x; h� ¼ ρ½xjh�ρ½hjx�. But since the first
conditional probability is causal, and the second couples
only equal time points, Eq. (A2) is more accurately
represented as

ρ½x; h� ¼ ρ½xð∘þÞjhð∘Þ�ρ½hð∘Þjxð∘Þ�;
which is ordered in time, resulting in a spiraling structure.
Performing the disorder average h…iJ of Eq. (A3), the

only term affected is the last exponential factor in the
second line of Eq. (A4), which yields
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hexpð−ĥTJxÞi
J ∼i.i.d.N ðḡ=N;g2=NÞ

¼ exp

�
−
ḡ
N

XN
i¼1

ĥTi
XN
j¼1

xj þ
g2

2N

XN
i;j¼1

ðĥTi xjÞ2
	
: ðA5Þ

Here, the scalar product in the last term in the exponent
rewrites explicitly as

ðĥTi xjÞ2 ¼
ZZ

dtds ĥiðtÞĥiðsÞxjðtÞxjðsÞ:

The terms suggest the introduction of the auxiliary fields
RðtÞ≔ ðḡ=NÞPj xjðtÞ and Qðt;sÞ≔ðg2=NÞPjxjðtÞxjðsÞ
to rewrite Eq. (A5) as

Y
i

exp

�
−ĥTi Rþ 1

2
ĥTi Qĥi

	
; ðA6Þ

where the bilinear form is to be read as

ĥTi Qĥi ¼
ZZ

dtds ĥTi ðtÞQðt; sÞĥiðsÞ:

The appearance of the product sign and the neuron-
independent fields R and Q signifies that the problem
becomes completely symmetric with regard to neurons.
Enforcing the definitions of the auxiliary fields by Dirac
distributions represented in the Fourier domain analogous
to Eq. (A4) yields another pair of fields R̂ and Q̂ and brings
Eq. (A3) into the form

hρ½h�iJ ¼ðA3Þ;ðA4Þ
Z

Dxρ½xjh�hδ½h − Jx�iJ ðA7Þ

¼ðA5Þ;ðA6Þ
Z

DfQ;R; Q̂; R̂g exp
�
−
N
ḡ
R̂TR −

N
g2

Q̂TQ
	

×
Y
i

Z
Dfxi; ĥigρ½xijhi�

× exp

�
ĥTi hi − ĥTi Rþ 1

2
ĥTi Qĥi þ R̂Txi þ xTi Q̂xi

	
:

ðA8Þ

Adding the normalization condition by integrating over h,

1≡
Z

Dhhρ½h�iJ;

we note that this integral affects only the last two lines in
Eq. (A8). The exponent in the second line can be
considered an action of a field theory for the auxiliary
fields fQ;R; Q̂; R̂g. The integral in the last two lines

appears to the power of N, so that one may rewrite the full
expression asZ

DfQ;R; Q̂; R̂g expðNΩ½R;Q; R̂; Q̂�Þ

with

Ω½R;Q; R̂; Q̂�

≔ −
RTR̂
ḡ

−
QTQ̂
g2

þ ln
Z

Dfx; h; ĥgρ½xjh�

× exp

�
ĥTh − ĥTRþ 1

2
ĥTQĥþ R̂Txþ xTQ̂x

	
:

We now compute the values of the auxiliary fields that
provide the dominant contribution to the probability mass.
The appearance of N in the exponent NΩ½R;Q� suggests to
perform the integration over the fields fQ;R; Q̂; R̂g in
saddle-point approximation, demanding ðδΩ=δfQ;R;

Q̂; R̂gÞ ¼! 0, which yields four conditions for the saddle-
point values R;Q; R̂; Q̂ of the fields

RðtÞ ¼ ḡhxðtÞiΩðR;QÞ;

R̂ðtÞ ¼ ḡhĥðtÞiΩðR;QÞ ≡ 0;

Qðt; sÞ ¼ g2hxðtÞxðsÞiΩðR;QÞ;

Q̂ðt; sÞ ¼ g2

2
hĥðtÞĥðsÞiΩðR;QÞ ≡ 0:

Here the expectation value is h…iΩðR;QÞ ¼R
Dx…

R
Dfh; ĥgρ½xjh� expðĥTh − ĥTRþ 1

2
ĥTQĥÞ. The

denominator coming from the outer derivative of the loga-
rithm appearing in the expression for Ω does not contribute,
because the normalization condition of the latter distribution
is unity, since the exponential term is themoment-generating
functional of a Gaussian process h ∼N ðR;QÞ and ρ½xjh� is
normalized, allowing us to rewrite

h…iΩðR;QÞ ¼
Z

Dx…hρ½xjh�ih∼N ðR;QÞ: ðA9Þ

The auxiliary fields ĥ and all their powers are zero on
expectation, which is a consequence of the normalization
(see Refs. [52,91], Sec. X).
The equations thus lead to the result in the main text,

Eqs. (2) and (3).

2. Derivation of the mean-field equation
for binary networks

Having obtained the saddle-point solution to the path
integral developed in the previous section, the first result is
the time evolution of the mean input activity RðtÞ. For
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binary networks, we need to insert information specific to
the neuron model in order to compute hxðtÞih∼N (RðtÞ;Qðt;tÞ)
in Eq. (2). This means we need ρ½xiðtÞjhi� for a binary
neuron. Note that only the probability distribution of the
activity at a single time point is needed, which is much
simpler to obtain than a distribution across all time points,
which would include not only the dependence on the input
history, but also on the neuron’s own activity state. For the
most compact presentation, here we use the bitlike n ∈
f0; 1g representation instead of the Ising x ∈ f−1; 1g
representation used in the main text. The results between
the two can be easily related by the mapping

x ¼ 2n − 1: ðA10Þ

The bitlike n ∈ f0; 1g representation has the advantage
that we need to consider only the active state in averages,
since the inactive n ¼ 0 state does not contribute. In this
case, the probability of finding a neuron active at some
time t,

p½niðtÞ ¼ 1jhi� ¼
Z

t

−∞

dt0

τ
e−ðt−t0Þ=τTp(hiðt0Þ); ðA11Þ

is given by the probability Tp(hiðt0Þ) to be activated at any
prior update time point t0 and the survivor function e−ðt−t0Þ=τ
[29], the probability that no further update happened since.
Therefore, plugging into Eq. (2)

RðtÞ ¼ ḡhxðtÞiΩðR;QÞ

¼ðA10Þ ḡð2hnðtÞiΩðR;QÞ − 1Þ

¼ ḡ
Z

t

−∞

dt0

τ
e−ðt−t0Þ=τh2TpðhÞ − 1ih∼N (Rðt0Þ;Qðt0;t0Þ);

where we use
R
t
−∞ðdt0=τÞe−ðt−t

0Þ=τ ¼ 1 from the second to
the third line. Taking a time derivative and using Eq. (6), we
obtain the mean-field equation

τ
d
dt

RðtÞ þ RðtÞ ¼ ḡhTðhÞih∼N (RðtÞ;Qðt;tÞ): ðA12Þ

Note that here we need only the input variance Qðt; tÞ,
which is trivially given by the mean activity and, poten-
tially, zero-time-lag cross-correlations of the outputs.
However, the mean-field equation does not depend on
the autocorrelation at nonzero time lag, which is derived in
the next section. Therefore, at least as far as cross-
correlations are negligible, Eq. (A12) is closed.

3. Derivation of the ODE for autocorrelations
in binary networks

Here we derive the form (9) for the evolution of the
autocorrelation.
The correlation functions in the Ising and bitlike repre-

sentation are, according to Eq. (A10), related as

qIðt; sÞ ≔ hxðtÞxðsÞi
¼ h½2nðtÞ − 1�½2nðsÞ − 1�i
¼ 4hnðtÞnðsÞi − 2hnðtÞi − 2hnðsÞi þ 1; ðA13Þ

where by Qðt; sÞ ¼ g2qIðt; sÞ we obtain the quantity
considered in the main text in Eq. (9). Defining
qðt; sÞ ≔ hnðtÞnðsÞi, we have

qðt; sÞ ¼
Z

dhρðhÞ
X1
nðtÞ¼0

X1
nðsÞ¼0

nðtÞnðsÞρ½nðtÞ; nðsÞjh�

¼ hρ½nðtÞ ¼ 1; nðsÞ ¼ 1jh�ih∼ρ; ðA14Þ

where we write h…ih∼ρ as a short form of
R
dhρðhÞ…. The

latter joint probability is decomposed, analogous to
Eq. (1), as

ρ½nðtÞ ¼ 1; nðsÞ ¼ 1jh�
¼ ρ½xðtÞ ¼ 1jxðsÞ ¼ 1; h�ρ½xðsÞ ¼ 1jh�: ðA15Þ

We obtain the first conditional probability on the right by
considering the possibilities to reach the final state xðtÞ ¼ 1
given that xðsÞ ¼ 1,

ρ½xðtÞ ¼ 1jxðsÞ ¼ 1; h�
¼ Pðno updates in ½s; t�Þ
þ Pðlast update in ½s; t� to up stateÞ

¼ e−
t−s
τ þ

Z
t

s
e−

t−t0
τ Tp(hðt0Þ)

dt0

τ
: ðA16Þ

Likewise, we obtain the latter conditional probability on the
right of Eq. (A15) as

ρ½xðsÞ ¼ 1jh� ¼
Z

s

−∞
e−ðs−t0Þ=τTp(hðt0Þ)

dt0

τ
: ðA17Þ

Combining Eqs. (A14), (A16), and (A17), we get
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qðt; sÞ ¼
�Z

s

−∞
e−ðs−t0Þ=τTp(hðt0Þ)

dt0

τ

�
e−ðs−t0Þ=τ þ

Z
t

s
e−ðt−t00Þ=τTp(hðt00Þ)

dt00

τ

	�
h∼ρ

¼
Z

s

−∞
e−ðt−t0Þ=τhTp(hðt0Þ)ih∼ρ

dt0

τ
þ
Z

s

−∞
e−ðs−t0Þ=τ

Z
t

s
e−ðt−t00Þ=τhTp(hðt0Þ)Tp(hðt00Þ)ih∼ρ

dt00

τ

dt0

τ
:

In the stationary state, the first integral in the last line reduces to hTpðhÞih∼ρe−ðt−sÞ=τ. Also, qðt; sÞ≕ qðt − sÞ is then a
function of the time lag Δt ≔ t − s alone

qðΔtÞ ¼ hTpðhÞih∼ρe−Δt=τ þ
Z

s

−∞
e−ðs−t0Þ=τ

Z
sþΔt

s
e−ðsþΔt−t00Þ=τhTp(hðt0Þ)Tp(hðt00Þ)ih∼ρ

dt00

τ

dt0

τ
:

Differentiating by Δt, we get

τ
d

dΔt
qðΔtÞ ¼ −qðΔtÞ þ

Z
s

−∞
e−ðs−t0Þ=τhTp(hðt0Þ)Tp(hðsþ ΔtÞ)ih∼ρ

dt0

τ

¼ −qðΔtÞ þ
Z

∞

0

e−t=τhTp(hð0Þ)Tp(hðtþ ΔtÞ)ih∼ρ
dt
τ
; ðA18Þ

where we substitute s − t0 → t in the last step and use the stationarity to shift the time arguments of the h by t − s. Using
Eqs. (A10), (A13), and (6) and assuming stationarity, we get the result (8) in the main text, where the gain function T instead
of Tp appears. Shifting the integration variable t by Δt, we obtain

τ
d

dΔt
qðΔtÞ ¼ −qðΔtÞ þ

Z
∞

Δt
e−ðt−ΔtÞ=τhTp(hð0Þ)Tp(hðtÞ)ih∼ρ

dt
τ
;

and performing another derivative τd=dΔt yields

τ2
d2

dΔt2
qðΔtÞ ¼ −τ

d
dΔt

qðΔtÞ þ
Z

∞

Δt
e−ðt−ΔtÞ=τhTp(hð0Þ)Tp(hðtÞ)ih∼ρ

dt
τ
− hTp(hð0Þ)Tp(hðΔtÞ)ih∼ρ

¼ qðΔtÞ − hTp(hð0Þ)Tp(hðΔtÞ)ih∼ρ; ðA19Þ

where for the second equality, we use the first-order
differential equation (A18). Closing the equation in the
mean-field approximation amounts to setting the measure
of h ∼ ρ≡N ðR;QÞ to the Gaussian process with mean R
and variance Q, as determined by the saddle-point equa-
tions (2) and (3). This approximation neglects fluctuations
of R and Q, which is justified if the system is not close to
the critical point and the average connectivity scales at most
like 1=N [28], but even if the latter condition is relaxed to a
1

ffiffiffiffi
N

p
scaling, this merely leads to an additional term in the

input fluctuations taking into account pairwise correla-
tions [92].
Moving to the ½−1; 1� representation by using Eqs. (A10),

(A13) and (6) and multiplying Eq. (A19) by g2 changes
Tp → T and g2q → Q so that we obtain Eq. (9). Here, in
addition, we introduce N R;Qð0Þ;Q as the bivariate Gaussian

with stationary mean R and covariance matrix ðQð0Þ
Q

Q
Qð0ÞÞ.

This Gaussian expectation value allows us to employ Price’s
theorem [30], which states that

d
dQ

hT ðhÞT ðh0Þiðh;h0Þ∼N R;Qð0Þ;Q

≡ðPrice’s theoremÞhTðhÞTðh0Þiðh;h0Þ∼N R;Qð0Þ;Q ;

where T ðxÞ ≔ R
x Tðx0Þdx0 is the primitive of T.

4. Replica calculation for chaos

a. Model-independent replica calculation

To assess the transition to chaos, we perform a replica
calculation that considers a pair of networks with identical
connectivity but slightly different initial conditions for the
neurons. We use superscripts (1) and (2) to distinguish the
two systems. The correlation between the two replicas is a
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measure of the distance between their respective states in
terms of the squared Euclidean distance

dð12ÞðtÞ ≔ jjxð1ÞðtÞ − xð2ÞðtÞjj2

¼
X2
α¼1

XN
i¼1

xðαÞi xðαÞi − 2
XN
i¼1

xð1Þi xð2Þi : ðA20Þ

The first term, on expectation over realizations of
the activity, approaches the average autocorrelation
in the two replicas and the latter term the inter-replica
correlation. For Ising spins, the expression simplifies

to 2N − 2
P

N
i¼1 x

ð1Þ
i xð2Þi .

The formal derivation of mean-field equations that
approximate these quantities proceeds analogous to the
Appendix 1: The analog expression to Eqs. (A3) and (A4)
reads

ρ½hð1Þ; hð2Þ� ¼
Z

Dfxð1Þ; xð2Þgρ½xð1Þ; xð2Þjhð1Þ; hð2Þ�

×
Y2
α¼1

δ½hðαÞ − JxðαÞ�:

Here the conditional density ρ½xð1Þ; xð2Þjhð1Þ; hð2Þ� is a joint
distribution across the two replicas, because it must allow
the representation of update processes or stochastic acti-
vations of corresponding neurons that have identical
realizations between the two replicas.
The important point is the identical matrix J appearing in

the product of the latter two Dirac distributions, which,
after introducing Fourier representations as in Eq. (A4) and
taking the disorder average over J analogous to Eq. (A5),
yields

hexpð−ĥð1ÞTJxð1Þ − ĥð2ÞTJxð2ÞÞi
J ∼i.i.d.N ð ḡN;g

2

N Þ

¼
YN
i¼1

Y2
α¼1

exp
�
−
ḡ
N
ĥðαÞTi

XN
j¼1

xðαÞj þ g2

2N

XN
j¼1

ðĥðαÞTi xðαÞj Þ2
	

× exp

�
g2

N

XN
j¼1

ĥð1ÞTi xð1Þj ĥð2ÞTi xð2Þj

	
:

The penultimate line is the same contribution for each
replica as in the single system; it is treated in the same
manner by introducing pairs of auxiliary fields
fRðαÞ; R̂ðαÞ;QðααÞ; Q̂ðααÞgα∈f1;2g. The last line couples the
two replicas and can be decoupled similarly by defining

Qð12Þðt; sÞ ≔ g2

N

XN
j¼1

xð1Þj ðtÞxð2Þj ðsÞ:

This definition is enforced by inserting a δ constraint
represented as a Fourier integral with the corresponding

conjugate field Q̂ð12Þðs; tÞ. The integral over
fRðαÞ; R̂ðαÞ;QðαβÞ; Q̂ðαβÞgα;β∈f1;2g is then taken in saddle-
point approximation with the resulting nontrivial saddle-
point equations

RðαÞðtÞ ¼ ḡhxðαÞðtÞiΩðfRðαÞ;QðαβÞgÞ;

QðαβÞðt; sÞ ¼ g2hxðαÞðtÞxðβÞðsÞiΩðfRðαÞ;QðαβÞgÞ: ðA21Þ

The remaining response fields vanish R̂ðαÞ ¼ Q̂ðαβÞ ≡ 0.
The expectation value in Eq. (A21) is taken with the
measure

h…iΩðfRðαÞ;QðαβÞgÞ ðA22Þ

¼
Z

Dfxð1Þ; xð2Þg…hρ½xð1Þ; xð2Þjhð1Þ; hð2Þ�iðhð1Þ;hð2ÞÞ; ðA23Þ

where ðhð1Þ; hð2ÞÞ ∼N ðfRðαÞ; QðαβÞgÞ is a pair of Gaussian
processes with cumulants

⟪hðαÞðtÞ⟫ ¼ RðαÞðtÞ;
⟪hðαÞðtÞhðβÞðsÞ⟫ ¼ QðαβÞðt; sÞ:

The distance (A20) between the replica in mean-field
approximation can then be written as

dð12ÞðtÞ ¼ Ng−2
�X2

α¼1

QðααÞðt; tÞ − 2Qð12Þðt; tÞ
	
:

b. Application to binary networks

The zero-lag cross-replica correlation is then given with
Eqs. (A21) and (A22) as

Qð12Þðt; tÞ ¼ðA21;A22Þ
g2

X1
xð1ÞðtÞ;xð2ÞðtÞ¼−1

xð1Þxð2Þ

× hρðxð1Þ; xð2Þ; tjhð1Þ; hð2ÞÞiðhð1Þ;hð2ÞÞ∼N ðfRðαÞ;QðαβÞgÞ:

To construct ρðxð1Þ; xð2Þ; tjhð1Þ; hð2ÞÞ, first note that both
neurons are updated by the same stochastic realizations of
the update process. This process has two random compo-
nents: The drawing of the update time point t0, which, for
the Poisson updates, has a distribution of e−ðt−t0Þ=τðdt0=τÞ
for the last event to have appeared in ½t0; t0 þ dt�, and the
stochastic activation depending on the gain function
Tp ∈ ½0; 1�, whose value for both replicas is compared to
the same realization of a uniformly distributed random
number r ∈ ½0; 1�.
The four possible outcomes of this update of states

ðxð1Þ; xð2ÞÞ are ð−1;−1Þ, (1,1), both of which lead to
xð1Þxð2Þ ¼ þ1 and ð−1; 1Þ, ð1;−1Þ, both of which lead
to xð1Þxð2Þ ¼ −1. One thus needs only to distinguish two
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outcomes: The event xð1Þxð2Þ ¼ −1 takes place if the
random variable r is in between the values of the two
gain functions, Tpðhð1ÞÞ < r < Tpðhð2ÞÞ, which happens
with probability pdiff ¼ jTpðhð1ÞÞ − Tpðhð2ÞÞj and the other
event xð1Þ · xð2Þ ¼ þ1 with 1 − pdiff . So in total, we get at
the time t0 of update

hxð1Þðt0Þxð2Þðt0Þir ¼ ð−1Þ × pdiff þ ðþ1Þ × ð1 − pdiffÞ
ðA24Þ

¼ 1 − 2pdiff

¼ 1 − 2jTp(hð1Þðt0Þ) − Tp(hð2Þðt0Þ)j: ðA25Þ

Taken together with the asynchronous update time point, we thus have

Qð12Þðt; tÞ ¼ g2
Z

t

−∞

dt0

τ
e−ðt−t0Þ=τð1 − 2hjTp(hð1Þðt0Þ) − Tp(hð2Þðt0Þ)jiðhð1Þ;hð2ÞÞ∼N ðfRðαÞ;QðαβÞgÞÞ:

Taking a derivative with respect to t, we obtain an ODE governing the time evolution of the cross-replica correlation

τ
d
dt

Qð12Þðt; tÞ ¼ −Qð12Þðt; tÞ þ g2ð1 − 2hjTp(hð1ÞðtÞ) − Tp(hð2ÞðtÞ)jiðhð1Þ;hð2ÞÞ∼N ðfRðαÞ;QðαβÞgÞÞ: ðA26Þ

Note that Qð12ÞðtÞ also appears implicitly in the distribution
of hð1Þ; hð2Þ, rendering the equation nonlinear. This implies
the result (11) in the main text, which follows by replacing
2½Tpðhð1ÞÞ − Tpðhð2ÞÞ� ¼ Tðhð1ÞÞ − Tðhð2ÞÞ due to Eq. (6).
So far, we have proceeded without approximation apart

from the saddle-point approximation. Perfect correlation of
the replicas Qð12Þðt; tÞ ¼ Q0 ¼ g2 is clearly a fixed point,
since then hð1ÞðtÞ ¼ hð2ÞðtÞ and the right-hand side

vanishes. We now wish to assess the stability of this
solution, that is, whether a perturbation of one replica
results in the recovery of perfect correlation (regular
dynamics) or in a decorrelation of the replicas (chaos).
Making the ansatz Qð12Þðt; tÞ ¼ Q0 − ϵðtÞ and using the
mean-field approximation of the input distribution, the last
term of the ODE (A26) becomes, by substituting H ≔
ðhð1Þ þ hð2ÞÞ=2; h ≔ ðhð1Þ − hð2ÞÞ=2 and then expanding in
h and ϵ=ð2Q0Þ:

(jTpðhð1ÞÞ − Tpðhð2ÞÞj)� hð1Þ

hð2Þ

	
∼N

��
R

R

	
;

�
Q0 Q0 − ϵ

Q0 − ϵ Q0

		
¼ (jTpðH þ hÞ − TpðH − hÞj)�H

h

	
∼N

��
R

0

	
;

�
Q0 − ϵ

2
0

0 ϵ
2

		

¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
2
ðQ0 − ϵ

2
Þp ZZ

exp

�
−

H2

2ðQ0 − ϵ
2
Þ −

h2

2 ϵ
2

	
jTpðRþH þ hÞ − TpðRþH − hÞjdHdh

¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ
2
ðQ0 − ϵ

2
Þp ZZ

e
− H2

2ðQ0−
ϵ
2
Þe−

h2
ϵ j2T 0

pðRþHÞhþOðh3ÞjdHdh

¼ 2
1ffiffiffiffiffiffiffiffiffiffiffi
2πQ0

p
Z

e−
H2

2Q0 jT 0
pðRþHÞjdH 1ffiffiffiffiffiffiffiffi

2π ϵ
2

p Z
jhje−h2

ϵ dh½1þOðϵÞ�

¼ 2hT 0
pðHÞiH∼N ðR;Q0Þ

ffiffiffi
ϵ

π

r
þO

�
ϵ
3
2

	
: ðA27Þ

Plugging this result and the ansatz Qð12ÞðtÞ ¼ Q0 − ϵðtÞ back into Eq. (A26) then yields Eq. (12).
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5. Growth of perturbations in binary networks

Starting from Eq, (12)

τ
d
dt

ϵðtÞ ¼ −ϵðtÞ þ c
ffiffiffiffiffiffiffiffi
ϵðtÞ

p
;

where c ¼ ð2= ffiffiffi
π

p Þg2hT 0ðhÞih∼N ðR;g2Þ, we integrate the
differential equation

τ−1
Z

t

0

dt ¼ −
Z

ϵðtÞ

ϵð0Þ

dϵ
ϵ − c

ffiffiffi
ϵ

p

¼ −2 lnðc − ffiffiffi
ϵ

p ÞjϵðtÞϵð0Þ;

so the solution is

ϵðtÞ ¼ ½c − ðc −
ffiffiffiffiffiffiffiffiffi
ϵð0Þ

p
Þe−ðt=2τÞ�2:

Expressed in terms of the dimensionality dðtÞ ¼
ðN=g2ÞϵðtÞ and d� ¼ ðN=g2Þc2 (18),

dðtÞ ¼ ½
ffiffiffiffiffi
d�

p
− ð

ffiffiffiffiffi
d�

p
−

ffiffiffiffiffiffiffiffiffi
dð0Þ

p
Þe−ðt=2τÞ�2:

In the long-time limit, the solution reaches the fixed point

d� ¼ dðt → ∞Þ:

The fastest increase happens for a Heaviside gain function
T ¼ −1þ 2θ ∈ f−1; 1g for which hT 0ðhÞih∼N ð0;g2Þ ¼
2=ð ffiffiffiffiffiffi

2π
p

gÞ so d� ¼ Ng2ð4=πÞð4=2πg2Þ ¼ Nð8=π2Þ. This
shows that the binary network decorrelates only to a
dimensionality of d�=N ¼ 8=π2 ≃ 0.81. The distance as
a function of the time is then

dðtÞ
N

¼ 8

π2

�
1 −

�
1 −

πffiffiffi
8

p
ffiffiffiffiffiffiffiffiffi
dð0Þ
N

r 	
e−ðt=2τÞ

�
2

:

The maximal signal-to-noise ratio is obtained by using ds
with a nonzero initial dsð0Þ and a noise distance d0n that
initially vanishes d0nð0Þ ¼ 0, leading to

dsðtÞ − d0nðtÞ
d�

¼ ½1 − ð1 − δÞe−ðt=2τÞ�2 − ð1 − e−ðt=2τÞÞ2;

where we define δ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dsð0Þ=d�

p
. The maximum of this

function is at

0 ¼ −ð1 − δÞ½1 − ð1 − δÞe−ðt̂=2τÞ� þ ð1 − e−ðt̂=2τÞÞ

⇒ e−
t̂
2τ ¼ δ

1 − ð1 − δÞ2 : ðA28Þ

For small δ ≪ 1, this expression yields

e−ðt̂=2τÞ ≃
δ

1 − ð1 − 2δÞ ¼
1

2
;

so the time of the maximum becomes approximately
independent of the initial value δ and thus independent
of the signal-to-noise ratio

t̂ ≃ 2τ ln 2 ≃ 1.39τ: ðA29Þ

The maximum is with e−ðt̂=2τÞ ≃ 1
2
,

dsðt̂Þ − d0nðt̂Þ
d�

≃
�
1 − ð1 − δÞ 1

2

�
2

−
�
1 −

1

2

	
2

¼ δ

2
þ δ2

4
:

The latter expression shows that this maximum relative to
the initial signal is

dsðt̂Þ − d0nðt̂Þ
dsð0Þ − d0nð0Þ

¼ ½dsðt̂Þ − d0nðt̂Þ�=d�
dsð0Þ=d�

≃
δ
2
þ δ2

4

δ2
¼ 1

2δ
þ 1

4

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
d�

dsð0Þ

s
þ 1

4
: ðA30Þ

For the Heaviside nonlinearity, the result becomes with
d�=N ¼ 8=π2,

dsðt̂Þ − d0nðt̂Þ
dsð0Þ − d0nð0Þ

¼ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N
dsð0Þ

s
þ 1

4
:

6. Growth of perturbations in rate networks

On small timescales, the distance evolves in proportion
to the Lyapunov exponent

dðtÞ ¼ dð0Þ expðλmaxtÞ:

So, dsðtÞ − dnðtÞ ¼ ½dsð0Þ − dnð0Þ� expðλmaxtÞ. In particu-
lar, there is no maximum expected on a timescale of the
neuronal dynamics. The typical timescale instead is deter-
mined by the maximal Lyapunov exponent.
To derive an equation for the time evolution of the

correlation between replicas in the rate network, we use the
pair of equations obtained from the mean-field description

τ∂txαðtÞ ¼ −xαðtÞ þ hαðtÞ
hhαðtÞhβðsÞi ¼ Qαβðt; sÞ≡ g2hT(xαðtÞ)T(xβðsÞ)i: ðA31Þ

We may thus write
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xαðtÞ ¼ 1

τ

Z
t

−∞
e−

t−t0
τ hαðt0Þdt0:

So the correlation function cαβðt; sÞ ≔ hxαðtÞxβðsÞi obeys

cαβðt; sÞ ¼ 1

τ

Z
t

−∞
e−

t−t0
τ
1

τ

Z
s

−∞
e−

s−s0
τ hhαðt0Þhβðs0Þidt0ds0;

which becomes in differential form

τ∂tcαβðt; sÞ ¼ −cαβðt; sÞ þ 1

τ

Z
s

−∞
e−

s−s0
τ hhαðtÞhβðs0Þids0:

This differential equation allows the integration along the
t direction by one time step δ,

cαβðtþ δ; sÞ ¼
�
1 −

δ

τ

	
cαβðt; sÞ

þ δ

τ

Z
s

−∞
e−

s−s0
τ hhαðtÞhβðs0Þids0;

which requires only cαβ and hhhi in the t past and in the s
past. The integration can be done for t ∈ ½0; T�, where T is a
desired final point.
As a result, one has cαβðt; sÞ for t ∈ ½0; T�. In the next

update step, we move into the s direction by

cαβðt; sþ δÞ ¼
�
1 −

δ

τ

	
cαβðt; sÞ

þ δ

τ

Z
t

−∞
e−ðt−t0Þ=τhhαðt0ÞhβðsÞidt0;

where the latter integral can be computed because it
requires only

hhαðtÞhβðsÞi ¼ g2hTðx1ÞTðx2Þiðx1;x2Þ∼N (0;cαβðt;sÞ) ðA32Þ

computed in the previous step.
It makes sense to introduce as an auxiliary variable

qαβðt; sÞ ≔ 1

τ

Z
t

−∞
e−

t−t0
τ hhαðt0ÞhβðsÞidt0;

for which we can assume the symmetry qαβðt; sÞ ¼
qβαðt; sÞ to write the updates

cαβðtþ δ; sÞ ¼
�
1 −

δ

τ

	
cαβðt; sÞ þ δ

τ
qαβðs; tÞ; ðA33Þ

cαβðt; sþ δÞ ¼
�
1 −

δ

τ

	
cαβðt; sÞ þ δ

τ
qαβðt; sÞ: ðA34Þ

The auxiliary variable qαβðt; sÞ obeys the differential
equation ðτ∂t þ 1Þqαβðt; sÞ ¼ hhαðtÞhβðsÞi, which yields
the update equation

qαβðtþδ;sÞ¼
�
1−

δ

τ

	
qαβðt;sÞþδ

τ
hhαðtÞhβðsÞi: ðA35Þ

So the required sequence of updates is
(i) Start at t ¼ 0.
(ii) Assume we compute cαβðt0; s0Þ and qαβðt0; s0Þ until

this point t for all ðt0 < t; s0 < tÞ.
(iii) Compute cαβðtþ δ; ∀ s0 ≤ tÞ using Eq. (A33).
(iv) Compute cαβð∀ t0 ≤ t; tþ δÞ using Eq. (A34).
(v) Compute hhαðtþ δÞhβðs0Þi∀ s0 ≤ t and

hhαðt0Þhβðtþ δÞi∀ t0 ≤ t using Eq. (A32) and the
result from the previous step.

(vi) Compute qαβðt0 ≤ tþ δ; tþ δÞ by iterating
Eq. (A35) with zero initial condition and starting
with t0 sufficiently far back in the past.

(vii) Compute cαβðtþ δ; tþ δÞ by average of Eqs. (A33)
and (A34) using new value qαβðtþ δ; tÞ and
qαβðt; tþ δÞ, respectively.

(viii) Go to the next time slice t → tþ δ, return to step iii.

7. Flux tubes in binary networks

It has been shown by Puelma Touzel and Wolf [34] that
the borders of flux tubes in spiking networks of inhibitory
LIF neurons are related to changes in the global order of
spikes. In particular, if a perturbation creates an additional
spike or causes the omission of an expected one, the mean
firing rate will stay constant, but the order of future spikes is
very likely to be irrevocably changed. The divergence rate
of two trajectories can be assessed by calculating the mean
number of unexpected spike order changes caused by a
single such perturbation, resulting in a branching process.
In the context of binary networks, we can ask the equivalent
question: Given a flip of a single neuron’s activity variable,
how many wrong update results will occur on average in
the following time τ?
The flip of one neuron xj → −xj causes a change Δhi ¼

−2Jijxj in the input of neurons it is connected to. Across
different target neurons, Δh is therefore distributed as

ρðΔhÞ ¼ N
�
�2

ḡ
N
; 4

g2

N

	
;

and the probability of a neuron to be updated into the wrong
state due to the perturbation in the input is

p(flipðxÞjΔh) ¼ hjTpðhþ ΔhÞ − TpðhÞjih∼N ðR;Q0Þ

≈
jΔhj≪1;T 0

p≥0jΔhjhT 0
pðhÞih∼N ðR;Q0Þ;

where the absolute value enters because both directions of
perturbation cause a positive probability of wrong updat-
ing, and we assume T 0 ≥ 0 for simplicity. Now we ask the
following question: How many downstream flips nspawns
will, on average, be triggered in the network during one
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time constant, given a single original flip? This quantity
controls whether the decorrelating flips will proliferate or
not, because since every neuron is updated on average once
per time constant, if nspawns < 1 and the neuron carrying the
original flip is updated again, it is most likely updated
“correctly” again, and the average number of flips in the
network has decreased. If nspawns > 1 on the other hand, the
average number of flips increases.
Being interested in the transition point, we can assume

nspawns ≈ 1 so that we do not need to take the interaction of
several flips into account. Then,

n̄spawns ¼ Nhp(flipðxÞjΔh)iΔh; ðA36Þ

and while we take the mean input R into account, we
neglect the perturbation of the mean input hΔhi ¼
�2ḡ=N ¼ OðN−1Þ ≈ 0 as it is small compared to the
standard deviation σΔh ¼ 2g=

ffiffiffiffi
N

p ¼ OðN−1
2Þ, allowing

the simple calculation

n̄spawns ¼ NhT 0
pðhÞih∼N ðR;Q0ÞhjΔhjiΔh∼N ð0;σ2ΔhÞ

¼ NhT 0
pðhÞih∼N ðR;Q0Þ

ffiffiffi
2

π

r
σΔh

¼ 2

ffiffiffiffiffiffiffi
2N
π

r
ghT 0

pðhÞih∼N ðR;Q0Þ:

Finally, accounting for T 0
pðhÞ ¼ T 0ðhÞ=2 given by Eq. (6),

the chaos transition is expected at

1¼! n̄spawns ¼
ffiffiffiffiffiffiffi
2N

p ffiffiffi
π

p ghT 0ðhÞih∼N ðR;Q0Þ; ðA37Þ

which is exactly the result (15) derived via the completely
different route of the replica calculation. While the deri-
vation here is nicely and intuitively interpretable, the
derivation via field theory and replica calculation allows
for systematic generalizations. For example, it is not clear
how to obtain the residual correlation (13) in the ad hoc
approach.

a. Flux-tube size

The flux-tube diameter is not a very informative measure
for a binary network, since the system trajectory in phase
space is typically not in the middle of a “tube” but close to
some of its boundaries (given by the thresholds). Therefore,
the distance to a boundary strongly depends on the
direction of perturbation. As a relatively informative
measure, we consider smearing the trajectory in all direc-
tions with some variance VarðΔhÞ ¼ σ2fl, which is chosen
such that on average, one flux-tube boundary is crossed.
This procedure makes sense insofar as it is similar to adding
noise onto the input. It is important to be aware that σfl is

not strictly the average distance to the closest boundary,
although the two quantities should covary.
The situation is analogous to the above calculation,

because we again need to consider the flips occurring
during an update in (on average) all N neurons, which is
given by Eq. (A36) only with σΔh replaced by σfl.

Demanding n̄spawns¼! 1 then yields

1¼! Nhp(flipðxÞjΔh)iΔh∼N ð0;σ2flÞ

⇒ σfl ¼
ffiffiffiffiffiffi
2π

p

NhT 0ðhÞih∼N ðR;Q0Þ
:

Of course, the 1=N scaling needs to be taken with caution,
since our perturbation goes into all N phase-space direc-
tions, resulting in a total length scaling as 1=

ffiffiffiffi
N

p
.

8. Equivalence of dynamical mean-field theories of
binary and rate networks

The dynamics (21) can equivalently be written as

τ∂tx ¼ −xþ TðhÞ;
h ¼ Jxþ ffiffiffi

τ
p

η; ðA38Þ

where the noise ηi is an Ornstein-Uhlenbeck process
[93], ðτ∂t þ 1Þηi ¼ ξi. This form allows the application of
the model-independent field theory. The single-neuron,
single-time-slice probability functional is ρ½xðtÞjh� ¼
δ½xðtÞ − R

t
−∞ e−ðt−t0Þ=τT(hiðt0Þ)ðdt0=τÞ�, and the noise term

is taken into account in ρ½h� ¼ δ½h − Jx −
ffiffiffi
τ

p
η�. Plugging

this expression intoEq. (2), we obtain the sameEq. (5) for the
mean activity as for the binary neuron if we choose the
strength of the noise σξ such that Qðt; tÞ ¼ g2 as well. The
reason for the equivalence is that the exponential function
appearing in the convolution equation is theGreen’s function
of τ∂t þ 1. In a stationary state, the saddle-point solution for
QðΔtÞ ≔ Qðt; tþ ΔtÞ ¼ g2hxðtÞxðtþ τÞi, moreover, fol-
lows the same Newtonian equation of motion (9) as for
the binary model [see Ref. [21], Eq. (7)].

a. Matching initial conditions

Knowing that the differential equations for the time-
lagged autocorrelations are the same, we have to adjust
their respective initial conditions to establish full equiv-
alence. Here we use the subscripts b and r to refer to the
quantities of the binary and rate model, respectively. Two
initial conditions are needed for a unique solution. One is to
require that limt→∞ _QðtÞ ¼ 0, which is the same in both
cases. So, the autocorrelation for infinite time lags is
described by a single value Q∞, which vanishes for
point-symmetric activation functions, but is in general
nonzero and self-consistently determined by the static
variability across neurons caused by the disorder (compare
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Fig. 5). In the binary case, the second condition isQbð0Þ ¼
g2 because the zero-lag autocorrelation of a single spin is
always 1. In a rate network, however, the input noise
strength determines how quickly the autocorrelation
decays, resulting in the condition on the derivative
_Qrð0þÞ ¼ −σ2ξ=2 [23,94].
The idea is to choose the variance of the noise σ2ξ in the

rate network such that Qrð0Þ ¼ Qbð0Þ, so that the time-
lagged solutions for the variance QðΔtÞ match.
To do so, using _Qð∞Þ ¼ 0 and conservation of total

“energy” VQ0
þ τ2 _Q2=2 implied by the Newtonian form of

Eq. (10), the condition Q0 ≔ Qrð0Þ¼! Qbð0Þ ¼ g2 can be
expressed as a condition for the derivative and thus the
noise amplitude

1

2
τ2 _Q2

0 þ VQ0
ðQ0Þ ¼ VQ0

ðQ∞ÞjQ0¼g2 : ðA39Þ

Plugging in _Q0 ¼ −σ2ξ=2 and solving for σ2ξ yields the
condition (22) in the main text. This proves that the binary
and rate model with appropriate noise have equivalent
mean activities and time-lagged autocorrelations in
dynamical mean-field approximation.

b. Explanation of the result

Taking a step back, what is the intuition behind this
result? When the binary neurons are averaged over real-
izations of the update time disorder, the Poisson update
process with rate τ−1 becomes an exponential kernel
corresponding to that of the rate network. The discrete
jumps of the binary neurons around their mean become red
noise [95,96] corresponding to the low-pass-filtered noise η
of the rate network (A38). By nice conspiracy, this noise

corresponds to simple white noise ξ in Eq. (21), which is
also the version treated in most works on rate networks with
noise, such as Refs. [22,23,32,46,97,98]. This tight relation
between the binary and rate models is summarized con-
ceptually in Fig. 14.

9. Slope of correlation transmission in binary and rate
neurons

Here we show that the difference between discrete
signaling and continuous signaling leads to a qualitative
difference in the slope of the correlation-transmission curve
and thus the transition to chaos.
Assume, as an approximation, that two neurons receive

inputs that are jointly Gaussian distributed as

ðh1; h2Þ ∼N ð0; KÞ;

where the covariance matrix is given by

KðcinÞ ≔ q
�

1 cin
cin 1

	
:

Here, cin ∈ ½−1; 1� controls the correlation between the
inputs.

a. Continuous signaling

A neuron with continuous signaling has the output

yi ¼ TðhiÞ;

where T ∈ ½−1; 1� is an activation function. The mean
output is thus,

hyii ¼ hTðhÞih∼N ð0;qÞ: ðA40Þ

For a point-symmetric gain function that we assume in the
following, the mean vanishes so that the variance of the
outputs is

a ¼ hT2ðhÞih∼N ð0;qÞ:

The correlation coefficient between the outputs of a pair of
neurons is

ccontout ðcinÞ ≔ a−1hy1y2i
¼ a−1hTðh1ÞTðh2Þiðh1;h2Þ∼N (0;KðcinÞ); ðA41Þ

which has the slope

dccontout ðcinÞ
dcin

¼ a−1hT 0ðh1ÞT 0ðh2Þiðh1;h2Þ∼N (0;KðcinÞ)

by Price’s theorem [30]. Evaluated at cin ¼ 1, this is

FIG. 14. Equivalence of binary (left) and rate models in the two
different forms (A38) (middle) and (21) (right): mapping from
output to input by identical matrix J; asynchronous update
process U with rate τ−1 implies exponential convolution kernel
leading to leaky integration [cf. Eq. (5)] identical to operator
L ¼ ðτ∂t þ 1Þ−1 present explicitly in Eqs. (A38) and (21).
Transitions between discrete binary states effect red noise η in
input h (middle), which corresponds to white noise ξ that is low-
pass filtered by L (right). Rate models differ in the order of
application of this kernel and the connectivity, which yields
equivalent dynamics because the two operators commute.
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dccontout ð1Þ
dcin

¼ a−1h½T 0ðhÞ�2ih∼N ð0;qÞ <
T 0<∞

∞: ðA42Þ

For activation functions T with finite slope T 0 < ∞, this
slope is thus finite. For the signum function
TðxÞ ¼ 2HðxÞ − 1, we get a ¼ 1 and

dccontout ðcinÞ
dcin

¼ 2hδðh1Þδðh2Þiðh1;h2Þ∼N (0;KðcinÞ)

¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det (KðcinÞ)

p ¼ ðqπÞ−1ð1 − c2inÞ−
1
2; ðA43Þ

where the latter line comes from the normalization con-
dition of the two-dimensional Gaussian distribution. Thus,
the slope diverges if and only if the output of the neuron
becomes discrete.

b. Discrete signaling

Now consider a neuron with discrete output but smooth
activation function T ∈ ½−1; 1�; a smooth function here
corresponds to a probabilistic activation

yi ¼


1 with prob ½TðhÞ þ 1�=2;
−1 with prob 1 − ½TðhÞ þ 1�=2:

The mean output is thus,

hyii ¼ h1× ½TðhÞ þ 1�=2− 1× f1− ½TðhÞ þ 1�=2gih∼N ð0;qÞ

¼ hTðhÞih∼N ð0;qÞ;

and the same as for the continuous signaling (A40). For a
point-symmetric gain function that we assume in the
following, the mean vanishes so that the variance of the
outputs is a ¼ 1. The correlation coefficient of the output is
then identical to the second moment between the outputs of
a pair of neurons

cdiscout ðcinÞ ≔ hy1y2i
¼ 1 × ð1 − pdiffÞ − 1 × pdiff ¼ 1 − 2pdiff

¼ 1 − hjTðh1Þ − Tðh2Þjiðh1;h2Þ∼N (0;KðcinÞ): ðA44Þ

The latter expression is related to the probability pdiff ¼
1
2
hjTðh1Þ − Tðh2Þji that the two neurons are in different

states. This expression is of course the same as found in
Eq. (A27). In the limit of cin → 1, we thus have

cdiscout ðcinÞ ≃
cin¼1−ϵ̂

1 − 2hT 0ðhÞih∼N ð0;qÞ

ffiffiffî
ϵ

π

r
þOðϵ̂3=2Þ;

where ϵ̂ ¼ ðϵ=g2Þ. So the slope diverges for cin → 1 as

dcdiscout ðcinÞ
dcin

jcin¼1−ϵ̂

¼ðA27Þ d
dð−ϵ̂Þ

�
1 − 2hT 0ðhÞih∼N ð0;qÞ

ffiffiffî
ϵ

π

r
þOðϵ̂3=2Þ

�
¼ hT 0ðhÞih∼N ð0;qÞðπϵ̂Þ−1

2 þOðϵ̂1=2Þ ∝ ð1 − cinÞ−1
2:

This divergence is present even if the gain function has a
finite slope T 0 < ∞. This is in qualitative contrast to the
finite slope found for the continuous signaling in Eq. (A42).
The infinite slope for continuous signaling in the limit of

a sharp activation function (A43) can be shown to have the
same form of divergence for cin → 1 when expanded for
cin ¼ 1 − ð1=qÞϵ in the limit of small ϵ ≪ 1.

10. Noisy binary pattern classification task

We implement a classification task by training one linear
readout

Sα0 ðtÞ ¼ wα0 ðtÞT ½xαðtÞ þ ξpre� þ ξpost ðA45Þ

of the network state xαðtÞ at time t for each of the α0 ¼
1;…; P ¼ 50 patterns to be detected. Here, ξpre and ξpost are
additional Gaussian readout noises of standard deviation
σξ;pre and σξ;post, respectively. ξpre controls how precisely a
single neuron’s state can be read out. ξpost represents a noise
component of the classification mechanism. Training of the
readout wα0 ðtÞ is performed for each time point t by linear
regression (see the Appendix 10 a) minimizing the quad-
ratic error of detecting the stimulus identity, i.e., minimiz-
ing ðSα0 − δαα0 Þ2.
The patterns are presented to the network by initializing

the first L ¼ 10 of theN ¼ 500 neurons to the stimulus. All
other neurons are in an initial state corresponding to the
stationary statistics. Each stimulus α is a random binary
pattern of length L with f−1; 1g appearing equally likely,
superimposed with Gaussian noise of standard deviation σ.
Note that because of the noise added to the binary values,
these initial states are not strictly ∈ f−1; 1g. This freedom
in the initial states is just a way to introduce the noise; after
their first update, the neurons’ states are strictly f−1; 1g
again. The resulting evolution of the network state given
this initial condition is termed xαðtÞ.

a. Linear regression

Minimizing the quadratic error over all patterns amounts
to linear regression; we consider a single scalar readout
target value yα ∈ R for each pattern α. In the example
above, yα ∈ f0; 1g. Then, w; x ∈ RN , and the quadratic
error is

ϵ ≔ min
w

XP
α¼1

ðwTxα − yαÞ2: ðA46Þ
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Demanding stationarity with regard to w by differentiating
by ∂wi

, we get N equations

0 ¼
XP
α¼1

2ðwTxα − yαÞxαi ∀ i

wT
XP
α¼1

xαxTα ¼
XP
α¼1

yαxTα :

The value w� to achieve stationarity is

w� ¼ C−1
XP
α¼1

yαxTα

with C ≔
XP
α¼1

xαxTα ; ðA47Þ

where we use the symmetry of C. Inserted into Eq. (A46)

ϵ ¼ w�TCw� − 2w�TX
α

yαxα þ
X
α

y2α

¼
XP
α¼1

y2α − S;

S ¼
�XP

α¼1

yαxTα

	
C−1

�XP
α¼1

yαxα

	
: ðA48Þ

In the case of classification, the latter expression simplifies
even further: The first term is a constant

P
P
α¼1 y

2
α ¼ 1 for

labels yα ∈ f0; 1g, where yα ¼ 1 if the presented pattern α
is the pattern α0 to be detected and yα ¼ 0 else, yα ¼ δαα0 .
The second term is then identical to the definition
Eq. (A45) for ξ ¼ 0 obtained by inserting w� from
Eq. (A47). The expression shows that the signal amplitude
Sα0 actually depends on the signal-to-noise ratio, the length
of the selected vector xα0 measured with regard to the
variability C across all patterns

Sα0 ¼ xTα0C
−1xα0 : ðA49Þ

The generalization to stochastic realizations of xα, for
example, due to the presentation of noisy patterns, is
straightforward. We need to replace

P
P
α¼1… withP

P
α¼1h…i in the measure for the error (A46) and thus

throughout this calculation, where h…i is the expectation
over the noise realizations.

b. Approximation of orthogonal
patterns and uniform noise

If the patterns x are sufficiently orthogonal in the signal
subspace, we can think of the entries k of any state vector xα
to be drawn independently. So, the xα;k ∈ f−1; 1g appear
with equal probability for those entries that lie in the

subspace of dimension ds. All remaining entries are
assumed to be constant across patterns. We may thus
restrict the space to the ds informative components. The
kl element of the covariance matrix for independently
drawn entries is

Ckl ¼
XP
α¼1

xαkxαl

≃ Pδkl: ðA50Þ

The signal of the readout α0 following from Eq. (A49) then
takes the simple form

Sα0 ≃ P−1jjxα0 jj2ds : ðA51Þ

If the signal is perfectly reliable, that is, if for all noise
realizations i the response xαi is equal to the stereotypical
response xαi ¼ x̄α, and if the dimension of the informative
subspace is ds, so x̄ ∈ Rds , we get with jjx̄jj2ds ¼ ds,

Sα0;max ≲ ds
P
:

If noisy realizations of patterns cause flips in random
entries of xα0 , which is an approximation since spins are
expected to differ in their susceptibility, the responses are
not perfectly reliable, so we need to replace xα0 by hxα0 i in
Eq. (A49) and thus,

Sα0 ≃ P−1jjhxα0 ijj2ds :

The above expressions thereby link the readout signal to the
dimensionality of the responses, as discussed in the main
text in Sec. II G.

c. Nonzero plateau of the signal

In the simulations, the noise distance somewhat unin-
tuitively saturates slightly below the signal distance. This is
explainable by taking into account that not all the initial
noise realizations actually cause a crossing of the flux-tube
boundary. Instead, those realizations simply follow the
unperturbed pattern trajectory, so that dn;i ¼ 0 in those
cases. Then, it is clear that the average noise distance is
smaller than the one predicted based on the assumption of
diverging trajectories:

hdn;iii ¼ ð1 − pno flipÞdresidualn :

We can estimate the probability that no flip occurred due to
the noise by using the results from the Appendix 7, where
we calculate the average number of flips in the network
after one time constant given an additional (noise) variance
in the input of the neurons σ2Δh. In our present case, the
noise is given by adding ξi ∼N ð0; σ2Þ on the output
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activities of the L original neurons of the pattern, so that the
corresponding input variance felt by all neurons in the
network is

σ̃2Δh ¼
g2

N
σ2L:

Now we need only to consider that actually the variance is
not constant for a complete round ofN updates, but linearly
diminishes every time one of the L source neurons is
updated until none is left. Since the flip probability depends
on the square root of the variance, there is a corrective
factor cdim ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðk=NÞp
in each term of the product:

pno flip ¼
YN−1

k¼0

½1 − psingle flipðkÞ�

¼
YN−1

k¼0

�
1 −

1

N
n̄spawnsðσ̃ΔhÞcdimðkÞ

	

¼
YN−1

k¼0

�
1 − gσ

ffiffiffiffiffiffiffi
2L
πN

r
hT 0

pðhÞih∼N ðR;Q0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k
N

r 	
:

ðA52Þ

This result fits well with the simulations, yielding the
predicted offset of the asymptotic average signal and noise
distances shown in Fig. 7(b) and the asymptotic plateau of
the approximated average signal in Fig. 7(c).

11. Description of simulations

Simulations for Figs. 5, 4(b), and 4(d) are implemented
using NEST [99]. NEST treats binary neurons in the bitlike
f0; 1g representation. To let every neuron “see” inputs from
f−1; 1g (Ising spins) we add to each neuron i a biasPj Jij
and then connect the neurons by the connections 2Jij
instead of Jij, thereby effectively simulating an Ising
system. To obtain the autocorrelations for the Ising case,
Eq. (A13) is used, leading to the result shown in Fig. 5.
Furthermore, we use a non-point-symmetric activation
function TðhÞ ¼ tanhðh − ΘÞ by choosing a Θ to be
nonzero for this plot. The reason is, first, that Θ ¼ 0 leads
to the theoretical prediction of maximal output variance
⟪x2⟫ ¼ 1 because the mean output activity hxi is 0.
However, due to disorder, the time-averaged activity is
actually a fluctuating quantity across the population, and
therefore, the population-averaged variance is always
below 1 for finite systems. This systematic underestimation
of the peak of the autocorrelation at zero time lag can be
avoided only by choosing an activation function that is not
point symmetric. Second, this choice is also natural because
mean activity 0 would imply that neurons are active half of
the time on average (see Supplemental Material II B in
Ref. [100]), which is considerably more than indicated by
the low firing rates measured in cortex [101]. For Fig. 5, we

therefore shift the working point by numerically inverting
hxi ¼ htanhðh − ΘÞih∼N ðR;QÞ to obtain the value for Θ,
which in mean-field approximation corresponds to
hxi ¼ −0.5. In the simulations, it turns out that
hxi ¼ −0.501, which agrees well with mean-field theory.
For Figs. 4(b) and 4(d), for each point of the grid one

simulation of two identical networks is performed. After
1000 ms, in one replica, the first two neurons are set to the
active state, and the third and fourth neurons are set to the
inactive state, after which, the simulation continues for
2500 ms. This method of perturbation entails the small
probability that these four neurons are already in exactly this
state, so that nothing is changed; this is the explanation for the
scattered single green dots in Figs. 4(b) and 4(d). The
advantage of the method is, however, that it guarantees
the same state of the random number generators across both
replicas.
The simulations for Figs. 7, 9, and 10 are performed

using a custom FORTRAN kernel.
The simulations of the LIF network for Fig. 11 are

implemented in NEST, using the “iaf_psc_delta” neuron with
its default parameter settings Vrest ¼ Vreset ¼ −70 mV;
V th ¼ −55 mV; τm ¼ 10 ms; trefr ¼ 2 ms; Cm ¼ 250 pF.
Asynchronous-irregular firing in the inhibitory network is
evoked by supplying external excitatory Poisson input with
rate of 3000 Hz and unit weight, leading to an average
network activity of 19Hz.After simulating for 10τm to obtain
a statewith stationary statistics, the input pattern is applied by
causing a spike in the corresponding neurons. Noise is added
to the pattern by additional external input spikes perturbing
the membrane potentials of the L pattern neurons. Further
parameters as mentioned in the Fig. 11 caption
are N ¼ 500; Jii ¼ −1 mV; K ¼ 125; τm ¼ 10 ms.
The LSTM network for Fig. 12 is simulated using the

vanilla PYTORCH implementation with a hidden layer of
size N ¼ 200. To obtain chaotic fluctuations over a range
of timescales, the hidden weights WHI, WHF, WHG are
initialized distributed as N ð0; 5.8=NÞ. This excludes the
WHO weights, which will cause very rapid, erratic dynam-
ics. Instead, these and all remaining weights and biases
used the default uniformly distributed Uð−1= ffiffiffiffi

N
p

; 1=
ffiffiffiffi
N

p Þ
initialization. After simulating for 50 time steps to obtain
stationary statistics, the input patterns are supplied using
the standard input function.
Analysis of simulation data and numerical solutions are

implemented in PYTHON. The code to generate all figures is
available as a Zenodo archive [102].
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